5.2.7.5. EXAMPLE OF A LABORATORY QUALITY MANUAL

This example is designed to provide the contractor with general guidelines in creating and maintaining a contractor's Quality Manual. The QC process requires records for equipment calibrations/verifications. Maintaining records in an orderly manner will assist the District Materials Engineer in quickly determining if the laboratory meets QC/QA requirements. Having the field laboratory fully prepared and the Quality Manual properly maintained represent two items that can keep the start of a project on schedule. It also aids in demonstrating the contractor's commitment to the QC process.

The following records are presented to illustrate what is required in the Quality Manual. Records need not be exactly as illustrated but should supply all necessary information concerning the equipment calibration/verification.

NOTE: After calibrating any force-load testing equipment (compression machine) a copy of the certification for the calibration device (proving ring, load cell, etc.) shall be attached to the calibration record.

NOTE: All equipment shall be verified immediately after repairs (this may include new or replacement parts, or mechanical or electrical adjustments) that may in any way affect the ability of the equipment to provide accurate readings as established during the calibration/verification process.

DISCLAIMER: It is not the intent of these guidelines to endorse manufacturers, suppliers, calibrating services, etc. The examples are used to provide guidance in establishing a properly equipped Quality Manual.

LABORATORY QUALITY MANUAL TABLE OF CALIBRATION/VERIFICATION DATES

Revision Date 12/06/96

Equipment – Test Method	Calibration/Verification Intervals (months)	Next Due Date
Mechanical Shakers – KT-2	12	2-9-2000
General Purpose Balances, Scales and Masses – AASHTO M 231	12	1-11-2001
Test Thermometers – KT-17, KT-22 & AASHTO T 231	6	5-03-2000
Testing Machine – KT-22, KT-23 & AASHTO T 22	12	4-28-2000
Sieves – AASHTO M 92	6	4-29-2000
Water tanks – AASHTO M 201 (clean)	24	2/27/2000
Pressure Meter – KT-18	3	
Volumetric Meter – KT-19	12	2/11/2000
Slump - KT-21	12	6/24/2000
Unit Mass – KT-20	12	1-14-2000
Capping Material – AASHTO T 231	3	4/03/2000
Reusable Molds – KT-23	12	6/01/2000

April 6, 2010

VERIFICATION PROCEDURE FOR MECHANICAL SIEVE SHAKER (Page 1/2)

Purpose: This method provides instructions for checking the length of time the mechanical sieving device must run to meet the tolerances as specified in **KT-2 3.3**.

Inspection Equipment Required:

- 1. Set of 8" dia. sieves (3/8, 4, 8, 16, 30, 50, 100, 200)
- 2. Timer
- 3. Balance, readable to 0.1 g.
- 4. Sample of fine aggregate.

Tolerance:

Shaker shall meet the tolerances specified in **KT-2 3.3**.

Procedure:

- 1. Place sample of aggregate in nested sieves.
- 2. Place sieves in shaker & set timer for 4 minutes.
- 3. Check sieving adequacy as described in **KT-2 6.3**.

4. If 4-minute setting doesn't meet specification increase time by 30 seconds intervals until specification is met.

April 6, 2010

VERIFICATION RECORD FOR MECHANICAL SHAKER (Page 2/2)

Verifie	d By:		Date:	
Equipr	nent:	Mechanical Shaker	Verif. Frequency:	12 months
Previou	us Verif. Date:		Next Due Date:	
Verific	ation Equipment U	sed:		
Verif. l	Equipment Identific	cation:		
Verif. l	Procedure Used:			
1	Weight of Sample	in grams.	-	
2	Weight of materia shaking as describ		after one minute of hand	
3	Percent of materia	l passed.	-	

CALIBRATION OF BALANCES

Page 1/3

March 30, 1995

ABC PACKERS INC. SCOPE OF WORK FOR LABORATORY BALANCES:

Definitions are on next page.

1. The weighing environment is checked for anything that would effect the ability of the balance to weigh accurately for example: direct air currents, direct sunlight, objects stuck under the balance or magnets in close proximity to the balance.

2. The balance is checked for errors in zero, sensitivity, calibration, comer load, linearity, repeatability and tare accuracy. Any errors are noted.

3. The balance is thoroughly cleaned and disassembled. Parts subject to wear or damage are inspected. On mechanical balances, this includes but is not limited to knife edges, arrestment mechanism, switches, pan brake assemblies and weight lifting assemblies. On electronic balances, the measuring cell and flextures are inspected. Circuit boards and switches are inspected for contamination and corrosion.

4. Any errors noted in step two are corrected through adjustments or replacement of minor parts. If the balance cannot be returned to factory specifications through this method, the using personnel are consulted as to the need for further repairs.

5. The balance is reassembled and final checks are made as in step two. Final calibration adjustments are made.

6. Applicable GLP log books are annotated.

A. All tests are performed with Class 1 stainless steel weights traceable to the NIST and are calibrated at least annually.

B. A certificate of weight traceability to the NIST is provided to each functional area. This certificate lists all the balances serviced in that area and the serial number of the weights used, their calibration date, the NIST trace number and the technician calibration number.

Page 2/3

DEFINITIONS:

Balance = Weighing device, generally with a resolution of 1 part in 12,000 or greater. Top loading balances will have a resolution of up to 1 part in 1,200,000 and sensitivity down to 1 milligram i.e. 1200.000 gram +/- .001 gram. Analytical balances will have a resolution of up to 1 part in 4,100,000 and sensitivity down to .0 1 milligram i.e. 41.00000 gram +/- .00001 gram. Micro-balances will have a resolution of up to 1 part in 200,000,000 sensitivity down to .0000001 gram.

Calibration = The accuracy of the balance, usually at full capacity, as compared to known standards.

Class 1 = A published standard for weights from the NIST. The standard dictates the materials, configuration and tolerance of the weights.

Corner loads = The deviation of the indicated weight between the center of the pan and the front, rear, left and right of the pan. This test is performed at 2/3 of maximum capacity.

Electronic Balance = A balance deriving it's indicated weight from a force restoration coil measuring cell or high resolution load cell.

Factory specifications = The balance manufacturers specifications for all adjustments, usually +/- 1 final count (least significant digit).

Flexture = Parts of the measuring cell. The accuracy of all adjustments is dependent on the condition of these parts.

GLP = Acronym. Stands for Good Laboratory Practices. Laboratories under this standard must establish a plan for weighing accuracy control.

Knife edges = The pivot points of the balance beam in mechanical balances.

Mechanical Balance = A high resolution balance deriving it's indicated readout from the mechanical movement of a balance beam and a system of built in standard comparison weights.

NIST = Acronym. Stands for the National Institute for Standards and Technology. This is the new name for the National Bureau of Standards (NBS).

Pan brake = Part of a mechanical analytical balance used to stop pan swing when the balance is arrested.

Page 3/3

DEFINITIONS, CONTINUED

Repeatability = Test performed on all balances to determine if it indicates the same weight and returns to zero every time a weight is applied to and removed from the pan. This test is normally performed with a weight that is near the normal usage of the balance if known or near the midrange of the balance. The weight is placed on the balance a minimum of three times to get a plus or minus reading.

Sensitivity = On mechanical balances this test determines the accuracy of the beam travel or optical range of the balance. On electronic balances this is the lightest weight that the balance will accurately respond to.

Tare accuracy = This test is used on mechanical balances to determine if the balance reads the same with or without the tare.

To: Kawsas DEPARTMENT OF TRANSPORTATION							
The following balances have been Service representative:	Calibrated on <u>SEE BELOW</u>						
Ba/anc e	Serial Number						
3/17/95 OHAUS E40003	Agg, 2274 CONCRETE						
3/17/95 MEHLER PID	Ад 9 192446 - Солскете						
3/17/95 A \$ 0 FW-100KAI	<u>C.5767023 CONCRETE</u>						
-3/17/95 AZD EP-6000	6401205 DU METALS						
3/17/95 SARTORIUS I BIDOP	41210240 Cement						
3/27/95 SHIMANTU AEG-220	D400400141 Concrete						
3/27/95 Ad DEP-20KB	Agg- 3808903 - CONCETE						
3/27/95 A&D EP-ZOKB	Азд, <u>3809190</u> Сонскете						
Serial number of mass standards: <u>E136/AP-9M94/AP-9W94/AP-9P74/AP-9Q94</u> Calibration date: <u>MA441994/September</u> 26, NIST test number: <u>732/246308/94-010</u> 7 State certification number: <u>x146-141K5</u> Date of issue: <u>x/36/95</u>	Alfie Packers Inc. 8901 J Street Omaha Ne. 68127 402-592-9102						

April 6, 2010

VERIFICATION PROCEDURE FOR THERMOMETERS (Page 1/2)

FORM DATE: March 29, 1996

Purpose:

This method provides instructions for verifying the settings on general-purpose thermometers.

Inspection Equipment Required:

1. A calibrated thermometer graduated in 2.0° F (1.0° C) increments having a range which includes the temperature range to be checked.

2. A clothespin to hold the thermometer in such a manner as to enable the operator to read the scale easily.

3. A container well to retain heat for constant temperature readings.

4. A hot plate to heat the liquid (oil) in the container well.

Procedure:

1. Place the thermometer inside the container well with the clothespin attached to the thermometer.

2. Take the first reading when the temperature has stabilized.

3. Take as many readings as necessary to determine the "laboratory thermometer setting" vs "actual calibrated reading."

VERIFICATION RECORD FOR THERMOMETERS (Page 2/2)

	Date:			
Thermometers	Verif. Frequency:	6 months		
ate:	Next Due Date:			
pment Used:				
Identification:				
	Thermometers ate: pment Used: Identification:	Thermometers Verif. Frequency:		

 Verif. Procedure Used:
 See procedure (page 1/2)

AASHTO Procedure	Equipment Thermometer		Calibrated Thermometer		
	Identification	Reading in ^o F	Identification	Reading in ^o F	

REPORT FORM FOR COMPRESSION MACHINE (Page 1/2)

Calibration performed according to ASTM E 4 (latest publication - Must provide Load Cell readings, Compression Mac percent error for each force reading.	
CONTRACTOR: D	ATE:
LOCATION:	
CALIBRATION SERVICE NAME:	
CALIBRATOR:	
NEXT LOAD CELL/RING CALIBRATION DATE:	
LOWER RANGE OF DEVICE (CLASS A VALUE):	
UPPER RANGE OF DEVICE:	
TEMPERATURE CORRECTION FACTOR USED:	
TESTING MACHINE MANUFACTURER:	
TESTING MACHINE SERIAL NUMBER:	
CALIBRATION WITNESS:	
CALBIRATOR SIGNATURE:	
COMMENTS:	

EXAMPLE FOR VERIFICATION RECORD OF TESTING MACHINE (Page 2/2)

SATEC Materials Testing Equipment

SATEG Systems, Inc. 903 Liberty Sheet Grave Cay, PA, 15124-9005 1-800-738-8979

Report and Certificate of Verification

R.

This is it centry that the following described machine has been vertice, a secondarion was A61 w E4-balance was source is token we of a 2 — 1,0 — 5

Leonites	Carmes Dept. of Transportation	Machine	Reiniget
	2200 Yan Beren Street		Companya en Tantar
	Regardinal, Hits annum 11		E. H. ANDELA
		Media of Vertilization	
."tta	Lang Sekroeder	Nec Verliciton Dus:	444497

Harry	e Vanieri	1000	ie –	10000	Lise.
1	Maarina	Deress	Hootine Ex	TO T	CO.
	Freedory	Peopley	Uni.	¥	Cude
[1000	100	2	US2	Y
[2000	1909	1	046	9
[4093	9336	11	010	8
[0000	ļ,	0	0.78	а
[8090	66 27	80	0.49	а
[10063	Ř	76	0.77	
Bary	e Vetleci	250	k;	2500	Line.
r					

ge kesilies:	800	10	5000	Lia.
Machine	Device 1	Necture	a se	ç.ə.
Peerlog	heating .	1	*	Gale
500	456.0	<u>u</u>	0.08	1
1660	10075	-7.5	0.74	ź
2560	2005.0	-40	0.25	٥
2090	2044	3.0	242	3
4. 00	39,594	20.6	0.52	- 25
5060	40032	7.4	0.46	5

Mathema	Deetca	Bertine Pr	Bertine Party	
Rendeg	Pending	Unit:	*	Cado
252	249,44	8.54 ,	¢£1	1
592	509,24	<.21	9.05	1
1000	100- 27	-1,27	0 13	2
1500	14(7,2)	£.69	9.16	
2000	98. 6 8	5.80	0.4 :	а
2040	25.187	-1.54	05.4	а

anga wasilan		л		
Manifest		Machine	Eeror	00 00
Feeding	Roeffing		¥.	

JOND WALVES CORRECTED FOR A TEMPERATURE OF 72 DEGREES FAHRENINET. settloates Hernod Used: X Followite-Force Method Settloates Betre Lond Method Settloates Darko Vit, <u>Stainen me</u> Denos Sensi Ruttoar <u>SA2807</u> _real Inclusing Device Wattest 04/1946

SATEC Vertication Equipresal Information:

G.Z.	Serial	NALVACULO.	Yerrowen	10630) Hingh	Literation	Dathwood Egency
Case	Number		High Velue	Clean I. Bahm	Dete	I structury Marines
,	450411A	STRAINSEASE	400	34.35	04/51/06	917.847.0910
8	3006025	STIMULOENOC	(400)	\$25.0	SHARES	GUT.#1/100%E1
3	3203030	STRANSPASE	20000	1040	Alatio	SJT.m/humen
4	VACUUM I	STRANSPASS-	120001	8920	3476465	8JT#41108421
8	236302F	STRANDEN DE	600460	16740	3,66,64	BJT.en th 08008
6	Č900	FICE LAKE WHERE IS	50	9.9	2017/02	NERT TRACE OF
7						

Malifantial autorator and partners date in secondence with ASTM Searcharten E4-30 give SATEC Synthme ins "Procedure for Colfection Function and Construminen Funting Bachman" The Tunking On inselfs werd for this we feature term been achieved at the ACTM Spectrator: E7- and a v becauty

to the Association manual or Samanas Lectrology

Calls of VerBootions 04/04/04

Validad By

Invice Engineer - SaferSplare, Inc.

Witness.

VERIFICATION PROCEDURE FOR SIEVES (Page 1/2)

Purpose:

This method provides instructions for checking the physical condition of laboratory tests sieves ranging in size 3 in. (75 mm) to #200 (0.075 mm).

Inspection Equipment Required:

1. A caliper readable to 0.01 mm (use for #4 or coarser).

Tolerances:

Sieves shall meet physical requirements specified in AASHTO M 92 (ASTM E11).

Procedure:

(Steps 1 & 2 apply to sieves having openings greater than 4.75 mm)

1. Select an adequate number of individual sieve openings (3 or 4) along a 45° line. Measure and record the sieve openings to verify that the size opening indicated on the label is correct.

2. Repeat step 1, rotating the sieve 90° .

3. Inspection the general condition of the sieve. Check the frame and solder joints for cracks or holes (check for pinholes in the finer sieves).

4. Make sure the sieves have an appropriate label.

5. Check for tightness of the wires on each individual sieve.

VERIFICATION RECORD FOR SIEVES (Page 2/2)

Verified By:		Date:			
Equipment:	Sieves	Verif. Frequency:	6 months		
Previous Verif.	Date:	Next Due Date:			
Verification Eq	uipment Used:				
Verif. Equipme	nt Identification:				

Verif. Procedure Used:

			ect	t	Stor 1		Opening Size in mm Step 1				Size in m tep 2	m	Suggested Action
Sieve	ID	General Condition	Label Correct	Wires Tight	1	2	3	4	1	2	3	4	R - Replace N - None

VERIFICATION PROCEDURE FOR WATER TANKS (Page 1/2)

Purpose:

This method provides instructions for checking water storage tanks.

Inspection Equipment Required:

1. Calibrated thermometer, graduated in 0.5°C divisions.

Tolerances:

1. Storage Tanks shall meet the tolerances specified in the test method.

Procedure:

(Tanks)

Drain and clean the water storage tanks in intervals not to exceed 24 months.

1. Visually inspect the tanks, note any crack or holes observed, and repair as needed.

2. Refill each tank with water containing 3 g/L of calcium hydroxide.

3. Thoroughly stir the water in the tanks at intervals not to exceed one month to help replace calcium ions that have depleted. - Record the date stirred.

(Recording Thermometer)

1. Check the recording thermometer for accuracy at least every six months.

2. Place calibrated thermometer in water adjacent to the recording thermometer.

3. Correction factor shall be provided if differences in the observed readings exceed 1°C. Record this verification of the thermometer as described in the section covering verification of thermometers.

VERIFICATION RECORD FOR WATER TANKS (Page 2/2)

Verified By:		Date:	
Equipment:	Water Tanks	Verif. Frequency:	24 months
Previous Verif. Date:		Next Due Date:	
Verification Equipme	nt Used:		
Verif. Equipment Ider	ntification:		
Verif. Procedure Used	l:		

Water Stirred in Tanks

1 st year		2 nd year
	Month 1	
	Month 2	
	Month 3	
	Month 4	
	Month 5	
	Month 6	
	Month 7	
	Month 8	
	Month 9	
	Month 10	
	Month 11	
	Month 12	

Tanks Drained and Cleaned:

Condition of tanks

Refilled with 3 g/L hydrated lime (calcium hydroxide)

Was the thermometer checked for accuracy every six months?

VERIFICATION PROCEDURE FOR PRESSURE METER (Page 1/2)

Purpose:

This method provides instructions for checking the Type B pressure meter.

Inspection Equipment Required:

- 1. Calipers or ruler readable to 0.01 in.
- 2. Gauge for measuring hemispherical end of tamping rod.
- 3. Scale accurate to 0.1 % of the weight of the bowl filled with water.
- 4. Calibration vessel.
- 5. Glass plate.

Tolerance:

The pressure meter shall comply with **KT-18** for dimensions and materials.

Procedure:

- 1. Determine the weight of water required to fill the calibration vessel. Record weight as *w*.
- 2. Determine the weight of water required to fill the bowl. Record the weight as *W*.
- 3. Determine R = w/W.
- 4. Determine the calibration factor K, where K=R.
- 5. Assemble water filled meter and calibrate the pressure gauge as outlined in **KT-18**.

VERIFICATION RECORD FOR PRESSURE METER (Page 2/2)

Verified By:		Date:	
Equipment:	Type B pressure meter	Verif. Frequency:	3 months
Previous Verif. Date:		Next Due Date:	
Verification Equipment	Used:		
Verif. Equipment Ident	ification:		
Verif. Procedure Used:			
<i>W</i> =			
W=			
R =		_	
K=			
Air content gradations 18?	verified as in KT		Yes / no
	Tamping I	<u>Rod</u>	
Diameter, inches	1)		5/8"
	2)		
Length, inches			At least 16"
Hemispherical end			Yes / no
Action recommended			

VERIFICATION PROCEDURE FOR VOLUMETRIC METER (Page 1/2)

Purpose:

This method provides instructions for checking the volumetric meter.

Inspection Equipment Required:

- 1. Calipers or ruler readable to 0.01 in.
- 2. Gauge for measuring hemispherical end of tamping rod.
- 3. Scale accurate to 0.1 % of the weight of the bowl filled with water.
- 4. Calibrated cup.
- 5. Thermometer

Tolerance:

The volumetric meter shall comply with **KT-20** for dimensions and materials.

Procedure:

1. Determine the volume of the bowl, with an accuracy of at least 0.1 % by weighing the amount of water required to fill it at room temperature, and dividing this weight by the unit weight of water at the same temperature.

2. Determine the accuracy of the gradations on the neck, by filling the assembled meter with water to a preselected air-content gradation and then determining the quantity of 21.1° C (70°F) water required to fill the meter to the zero mark. The added water shall be within ± 0.1 % volume of the measuring bowl. Repeat this procedure 3 times.

3. Determine the volume of the calibrated cup by the method outlined in **KT-20**.

VERIFICATION RECORD FOR VOLUMETRIC METER (Page 2/2)

Verified By:		Date:	
Equipment: Volumetric meter		Verif. Frequency:	12 months
Previous Verif. Date:		Next Due Date:	
Verification Equipment Used:			
Verif. Equipment Identification:			
Verif. Procedure Used:			
Volume of bowl:			
Volume of calibrated cup:			
Neck gradations accurate			
Gradations checked 3 times			
	Tampiı	ng Rod	
Diameter, inches	1)		5/8"
	2)		
Length, inches			At least 12"
Hemispherical end			XX (
Action recommended			

VERIFICATION PROCEDURE FOR SLUMP (Page 1/2)

Purpose:

This method provides instructions for checking the critical dimensions of the slump cone.

Inspection Equipment Required:

- 1. Calipers or ruler readable to 0.01 in.
- 2. Straightedge or ruler.
- 3. Digital micrometer.
- 4. Gauge for measuring hemispherical end of tamping rod.

Tolerance:

Equipment shall meet the dimensional tolerances specified in the test method.

Procedure:

(CONE)

1. Measure the inside diameter at the top of the cone to the nearest 0.01 in. by taking two readings 90° apart using the calipers and record the results.

2. Invert the cone and repeat the procedure.

3. Place the cone on a flat surface. Measure and record the depth of the cone by using the calipers and a straightedge and record the results.

4. Measure the thickness of the cone to the nearest 0.001 in. by taking 2 readings 90° apart at the bottom of the cone & record the results.

(TAMPER)

1. Measure the diameter of the tamping rod to the nearest millimeter by taking two readings 90° apart using the micrometer and record the results. Measure the length of the rod to the nearest 0.1 in. and record the results.

2. Measure the hemispherical end of the rod and record the results.

	(Page 2/2))	
Verified By:		Date:	
Equipment: Slump Cone and	Tamping Rod	Verif. Frequency:	12 months
Previous Verif. Date:		Next Due Date:	
Verification Equipment Used:			
Verif. Equipment Identification:			
Verif. Procedure Used:			
Top inside diameter, inches	3)	S 4	pecification " +/- 1/8"
Bottom inside diameter, inches	2)	8	" +/- 1/8"
Depth of Cone , inches	1)	1	2" +/- 1/8"
Wall thickness, inches	1)		lot less than .045"
Diameter, inches			/8"
Length, inches		A	Approx. 24"
Hemispherical end		Y	/es / no
Action recommended			

VERIFICATION RECORD FOR SLUMP (Page 2/2)

VERIFICATION PROCEDURE FOR UNIT MASS (Page 1/2)

Purpose:

This method provides instructions for calibrating measures used in obtaining unit mass.

Inspection Equipment Required:

- 1. Balance conforming to Part V 5.9. Sampling and Test Methods Forward
- 2. 0.01 in (0.25 mm) feeler gauge.
- 3. 1/4 in (6 mm) thick glass plate at least 1 in (25 mm) larger than the measure.
- 4. Water pump or chassis grease.
- 5. Thermometer.

Tolerance:

The bowls and measures shall conform to the dimensions found in KT-20.

Procedure:

1. Place glass plate on rim and attempt to insert feeler gauge.

2. Fill measure with room temperature water and cover in such a way as to dispel air bubbles and excess water.

3. Determine the mass of water in the measure.

4. Determine the temperature of the water, and obtain its density from **KT-15**.

5. Calculate the volume, V, of the measure by dividing the mass of the water required to fill the measure by its density.

6. Calculate the factor for the measure (1/V) by dividing the density of the water by the mass required to fill the measure.

VERIFICATION RECORD FOR UNIT MASS (Page 2/2)

Verified By:	Date:	
Equipment: Measure for Unit Mass	Verif. Frequency:	12 months
Previous Verif. Date:	Next Due Date:	
Verification Equipment Used:		
Verif. Equipment Identification:		
Verif. Procedure Used:		
Glass 6 mm thick and 25 mm larger than measure	•	ecification es / no
Rim plane to 0.25 mm	Ye	es / no
Temperature of water taken	Ye	es / no
Density obtained KT 20	Ye	es / no
Volume and measure factor determined Action recommended	Yes / no)

VERIFICATION PROCEDURE FOR CAPPING MATERIAL (Page 1/3)

Purpose:

To ensure that capping material meets Quality requirements.

Inspection Equipment Required:

- 1. Testing Machine
- 2. Melting Pot capable of holding a temperature between 265 to 290°F (129 to 143°C)
- 3. Three 2-inch (50 mm) cube molds
- 4. Ladle or other suitable pouring device
- 5. .002 feeler gauge and bar
- 6. Mineral oil
- 7. Straight bar

Tolerance:

All capping material shall conform to the following strength and thickness requirements:

Cylinder	Minimal Strength of Capping Material	Maximum	Maximum
Compressive		Average	Thickness
Strength psi (MPa)		Thickness of	Any Part of
		Cap	the Cap
500 to 7000 psi	5000 psi (35 MPa) or cylinder strength,	1/4 inch	5/16 inch
(3.5 to 50 MPa)	whichever is greater	(6 mm)	(8 mm)
Greater than 7000	Compressive strength not less than cylinder	1/8 inch	3/16 inch
psi (50 MPa)	strength	(3 mm)	(5 mm)

VERIFICATION PROCEDURE FOR CAPPING MATERIAL (Page 2/3)

Procedure:

1. Melt sufficient capping material in melting pot until it reaches between 265 to 290°F (129 to 143°C).

2. Bring the mold parts to 68 to 86° F (20 to 30° C).

3. Coat all surfaces of cube molds with mineral oil.

4. After stirring thoroughly, use Ladle to begin casting the cubes. Quickly fill all three molds until the molten material reaches the top of the filling hole.

5. Allow time for maximum shrinkage to occur due to cooling and solidification to occur (approximately 15 minutes) and refill each mold with molten material.

- 6. After solidification occurs remove the cubes from the molds without breaking off the knob.
- 7. Remove oil, sharp edges, and fins from cubes.
- 8. Allow cubes to harden for a minimum of two hours before breaking.
- 9. Test the cubes in the compression machine and calculate the compressive strength.

VERIFICATION RECORD FOR CAPPING MATERIAL (Page 3/3)

Verified By:		Date:	
Equipment:	Capping Material	Verif. Free	quency: <u>3 months</u>
Previous Verif.	Date:	Next Due Date:	
Verification Eq	uipment Used:		
Verif. Equipme	ent Identification:		
Verif. Procedu	re Used:		

Compressive Strength at 2 hours (average of three), PSI

Material Meets specification requirements as outlined in Page 1/3.

VERIFICATION PROCEDURE FOR REUSABLE MOLDS (Page 1/2)

Purpose:

This method provides instructions for checking all types of reusable molds.

Inspection Equipment Required:

- 1. Calipers or ruler readable 0.01 in.
- 2. Aggregate for dry rodding, (cylinder molds)
- 3. Supply of water for leak testing
- 4. Triangle for checking right angels

Tolerance:

Molds shall meet the dimensional requirements of AASHTO M 205 for cylinder molds, and KT-22 for beam molds.

Procedure:

1. Reusable plastic molds shall be dry rodded and checked for damage, as stated in AASHTO M 205.

- 2. All reusable molds shall be filled 90 95% of capacity with water and subjected to jarring and tapping.
- 3. After standing for a minimum of one hour, check molds for visible leakage.

VERIFICATION RECORD FOR REUSABLE MOLDS (Page 2/2)

Verified By:		Date:	
Equipment:	Reusable Molds	Verif. Frequency:	12 months
Previous Veri	f. Date:	Next Due Date:	
Verification E	quipment Used:		
Verif. Equipm	ent Identification:		
Verif. Procedu	ıre Used:		

Inside Diameter
Inside Height
Top and Bottom Planes Perpendicular to Axis
Diameter Variation Within +-2% (% of variation)
Satisfactory condition after dry rodding
Leakage
Materials React With or Injurious to Concrete