5.9.46 DETERMINATION OF PAVEMENT PROFILE WITH THE PROFILOGRAPH
(Kansas Test Method KT-46)

1. SCOPE

This method of test covers the procedure for determining the smoothness, i.e. profile index, of both concrete and asphalt pavement using the California type 25-foot (7.6 mm), profilograph or equivalent.

2. APPARATUS

2.1. California type, 25-foot (7.6 mm), profilograph or equivalent Figure 1, with pointer. The 25-foot (7.6 mm) profilograph is a rolling straight edge; which measures vertical deviations from a moving 25-foot (7.6 mm) reference plane. The pavement profile is graphically recorded on a profilogram with scales of 300:1 longitudinally and 1:1 vertically.

2.2. Blanking band which is a plastic scale 1.70 inch (43 mm) wide and 21.12 inch (333 mm) long representing a pavement length of 528 ft (100 m) or 0.1 mile (0.1 km) at a scale of 1 inch = 25 feet. Near the center of the scale is a dashed line extending the entire length of the plastic scale. On either side of this dashed line are scribed lines 0.1 inch (2 mm) apart, parallel to the dashed line. These lines serve as a convenient scale to measure deviations of the profile trace above or below the dashed reference line. These deviations are called “scallops”.

2.3. Scale graduated in 0.1 inch or 1 mm.

2.4. Medium point ballpoint pen with red ink or other color contrasting to the profile trace.

2.5. Electronic calculator.

2.6. Plain recording chart paper as specified by the manufacturer of the profilograph.

2.7. Bump template which is a plastic template having a marked length 1 inch (25 mm) long on one face, and a slot (or edge) parallel to the marked length. A distance equal to the maximum bump specified separates the two reference lengths Figure 2. The 1 inch (25 mm) line corresponds to a longitudinal distance of 25 feet (7.5 m) on the longitudinal scale of the profilogram.

3. CALIBRATION

3.1. All profilographs used on KDOT projects must be calibrated at least annually. Calibration must be checked any time the profilograph has been altered or repaired. The certification includes establishing the proper tire inflation pressure, checking the trueness of the tire travel, checking the chart scale factor, and checking vertical displacement of the sensing wheel.

3.2. Each District and contractor using a profilograph shall establish a 500 to 1000 ft. (100 to 300 m) distance calibration test section on or near each project. This test section should be fairly straight, relatively flat and used periodically to check the longitudinal calibration and trace reproduction.

3.3. Longitudinal calibration consists of pushing the profilograph at walking speed approximately 3 mph (approximately 5 km/h), over a pre-measured test distance 500 to 1000 ft. (100 to 300 m) and determining the chart scale factor. Dividing the premeasured test distance in inches (mm) by the profilogram trace length, for the test distance, in inches (mm) will determine the scale factor. This factor shall be 300 ± 0.5.
If the profilograph produces charts with a different scale factor, adjustment of the profilograph must be made to bring the scale factor within the tolerances specified above.

3.4. Vertical calibration consists of placing the center recording wheel of the profilograph on a base plate and recording the base elevation. Two plates 0.5 inches (12.5 mm) thick each are added under the center wheel one at a time and the change in elevation noted. The two plates are removed one at a time and the change in elevation noted. Each step in the process shall show a change in height of 0.5 inches ± 0.01 inch (12.5 mm ± 1.0 mm). If the profilograph produces results not conforming to the above limits, it must be adjusted to within the tolerance specified.

3.5. The automatic trace reduction capability of a machine so equipped shall be checked by comparing the machine's results to the results obtained through manual trace reduction. The comparison shall be made for the trace obtained at the Materials and Research test section and for each project, at the project test section. The results of the comparison may not differ by more than 2.0 inches/mile (30 mm/km). All calibration traces and calculations shall be submitted to the Materials and Research Center or to the appropriate construction office to become part of the project file.

4. TEST PROCEDURE

4.1. The profilograph is propelled at walking speed approximately 3 mph (approximately 5 km/h) in the paths indicated for each section of pavement Figure 1. Propulsion may be provided by manually pushing or by a suitable propulsion unit such as a garden tractor. Do not push or pull a profilograph with a vehicle. More than one person may be required to hold the back end of the profilograph exactly in the required path on superelevated or sharp horizontal curves.

4.2. Use of the pointer to maintain the required trace path is mandatory

4.3. If excessive "spikes" are encountered, decrease the rate of travel. An excessive number of "spikes" on a trace make it difficult to evaluate and may affect test results.

4.4. If possible, assemble the profilograph ahead of the location on the pavement where testing is to start. With the distance measuring wheel down and the pen in place on the trace paper, push the machine to the start position in the direction the test will be conducted. The center wheel should be the reference wheel. While the profilograph is stationary at the start location, move the cable attached to the pen thus creating a spike mark on the trace and label that mark as the start location. Using this procedure at the beginning and end of each trace will ensure that all systems are working properly, that slack has been removed from the drive chains, and will clearly define the start and end location. Also mark which direction is up on the trace and the direction the profilograph was pushed.

4.5. Push the profilograph in the same direction when recording each trace for a given section of pavement.

4.6. Indicate stationing on the profilogram at least every 500 feet (100 m), using the procedure outlined in Section 4.4 of this test method. More frequent station references of every 100 feet (25 m) or every 200 feet (50 m) are highly desirable where possible. Station referencing on the trace is used to accurately locate 0.40 inch (10 mm) bumps. Notation of landmarks, roadway signs, etc. should also be made on the trace for additional referencing.

4.7. Completely label both ends of the profilogram with the project number, stationing represented on the roll and name of profilograph operators. Fill out a report form and secure it around the trace roll. This report insures that the person reducing the trace and reporting results will have all necessary information.
4.8. A little dirt or debris will spike out and not effect the profilograph readings, however, excessive mud or caked mud must be removed prior to testing. Anything on the pavement surface longer than 2 to 3 inches (50 to 75 mm) may not be considered a spike when reducing the trace and should be removed.

4.9. When operating the profilograph, all wheels should always be on the pavement for which the contractor is responsible. Test from header to header whenever possible.

4.10. Pavement not tested at the end of a day's run due to barrier fences, machinery or other obstructions shall be included in a subsequent test run.

5. TRACE REDUCTION AND BUMP/DIP LOCATING PROCEDURE

5.1. Using a red (or other contrasting color), medium point, ballpoint pen; retrace the profilogram through the middle of any spikes. This outlining procedure removes spikes and minor deviations and generally smooths the trace for easier reduction and analysis.

5.2. Use a bump template (scribed side down) to locate bumps/dips for removal. At each prominent bump/dip or high/low point on the profile trace, place the template so that the scribe marks at each end of the scribed line intersect the profile trace to form a chord across the base of the peak/valley or indicated bump/dip. The line on the template need not be horizontal. With a sharp pencil, draw a line using the narrow slot in the template (or edge) as a guide. Any portion of the trace extending above/below this line will indicate the approximate length and height of the bump/dip in excess of the specification.

There may be instances where the distance between easily recognizable low/high points is less than 1 inch (25 mm). In such cases a shorter chord length shall be used in making the scribed line on the template tangent to the trace at the low/high points. It is the intent, however, of this requirement that the baseline for measuring the height of bumps (or depth of dips) will be as nearly 1 inch (25 mm) as possible, but in no case to exceed this value. When the distance between prominent low/high points is greater than 1 inch (25 mm), make the ends of the scribed line intersect the profile trace when the template is in a nearly horizontal position. A few examples of the procedure are shown in Figure 2.

After marking the bump/dip on the profilogram, determine the station number of the center of the bump/dip by scaling from the nearest reference mark. Record the track identification and station of the bump/dip.

5.3. Place the blanking band (scribed side down) over the profile with the dashed reference line as nearly centered on the profile trace as possible.

The profile trace may move from a generally horizontal position when going around superelevated curves making it impossible to follow the central portion of the trace without shifting the blanking band. When such conditions occur, the profile should be broken into short sections and the blanking band repositioned on each section as shown in the upper part of Figure 2.

Indicate the beginning and ending of superelevated curves on the profilogram at the time the profile trace is being made.

5.4. Begin evaluating each trace from the same point on the road so that sections representing the same length of road can be aligned on the test report form. Measure and total the height of all the scallops appearing both above and below the dashed reference line, measuring each scallop to the nearest 0.05 inch (1 mm). Do not count a scallop as 0.05 inch (1 mm) just because you see the profile line or there is space under the line. Short sections of the profile line may be visible above or below the dashed reference line, but unless they project 0.03 inch (0.7 mm) or more vertically and extend longitudinally for 0.08 inch (2 mm)
or more on the profilogram, they are not included in the count. Spikes are not counted. Double-peaked scallops are only counted once as the highest peak Figure 3.

Write the total count in inches (mm) on the profilogram above the profile line (toward the center of the section) and circle it. Outline the position of the blanking band when reducing the trace for later repositioning to check trace reduction procedure. Rotate the blanking band about the previous end position when evaluating the next section Figure 4.

When a scallop occurs at the end of the blanking band, count the scallop only once. Place the scallop in the 0.1 mile (0.1 km) section where the peak is highest Figure 4.

Always use the measured trace length in computations. This length may not agree exactly with distance by subtracting stationing. Always use ± after the total length on the report.

Enter the measured roughness for each 0.1 mile (0.1 km) section and for each track into the worksheet shown in Figure 6. Enter the profile index into KDOT Form 242.

5.5. The last section counted is generally not an even 0.1 mile (0.1 km). If not, its length should be scaled to determine its length in miles (km) (Calculated to three decimal places). For the example shown below, the last section measures 7.60 inches (193 mm) in length.

English

\[
\frac{7.60 \text{ in}}{5,280 \text{ ft/mile}} = 0.036 \text{ miles}
\]

Metric

\[
\frac{193 \text{ mm}}{1,000,000 \text{ mm/km}} = 0.0579 \text{ km} = 0.058 \text{ km}
\]

If the last section is less than or equal to 250 ft (0.047 mile) (0.05 km [50 m]), it is added to and included with the previous 0.1 mile (0.1 km) section to determine compliance with the profile index. If the last section is more than 250 ft (0.047 mile) [0.05 km (50 m)], it is treated as a separate section.

When the profilograph must be picked up or partially disassembled and moved around an unpaved area or structure, a new section will be started.

The profile index is determined as inches/mile (mm/km) using the “zero” blanking band but is simply called the profile index. The procedure for converting counts inches of roughness (mm of roughness) to profile indices is illustrated in Figure 5. For 0.1 mile (0.1 km) sections, the profile index can be determined from the counts (inches of roughness (mm of roughness)) by moving the decimal point one position to the right. For odd length sections, the profile index is determined by dividing the counts (inches of roughness (mm of roughness)) by the section length in miles (km). The weighted average for a day's run is determined by dividing the total counts (inches of roughness (mm of roughness)) for the day's run by the total length (in miles (in km)) of the day's run. See Figure 6.

6. REPORT
6.1. Contractors shall furnish and certify profilograph test reports, **KDOT Form No.242**, Figure 6.

6.2. All profile traces (profilograms) become part of the Engineer's permanent project records.

7. OPERATOR CERTIFICATION

7.1. Basis of operator certification is attendance at an approved training school and comprehension of the material presented, or by having proof of certification by another agency with requirements similar to KDOT.

7.2. A contractor's personnel may be decertified if the test results vary from the KDOT results by more than what is regarded as normal test variation.

7.3. When a contractor's personnel are decertified to issue profilograph reports, such reports will not be recognized until corrections in testing, trace reduction and reporting are made to the satisfaction of the Engineer.
LOCATION OF PROFILE WHEEL

--- LANE EDGE OR CONSTRUCTION JOINT (PAINT STRIPE)
--- TRACE 3 ft FROM LANE EDGE
--- TRACE 3 ft FROM CONSTRUCTION JOINT
--- CONSTRUCTION JOINT OR LANE EDGE

PROFILOGRAPH

MULTIPLE AXEL WHEEL ASSEMBLY

RECORDER

MULTIPLE AXEL WHEEL ASSEMBLY

PROFILE WHEEL
METHOD OF COUNTING WHEN POSITION OF PROFILE SHIFTS AS IT MAY WHEN ROUNding SHORT RADIUS CURVES WITH SUPERELEVATION

Incorrect position of blanking band

Blanking band shifted to accommodate lowering of profile

METHOD OF PLACING TEMPLATE WHEN LOCATING BUMPS TO BE REDUCED

Scribed line

Baseline approx.
25 feet

Baseline less
than 25 feet

Height of peak is
less than 0.4"

Baseline more than 25 feet

BUMP TEMPLATE
Figure 3

Example Showing Method of Deriving Profile Index From Profilogram

Dashed reference line in the center of the scale.

Total count for this 0.1 mile section is 1.70 inches (1.70 tens of an inch).

Profile index for this 0.1 mile section is 1.70 inches per mile. (1.70 + 0.1 = 1.80)

Scallops are areas enclosed by profile line and dashed reference line.

Small projections which are not counted.

Spikes caused by dirt or rock on the pavement (not counted).

Double scallops - only count the higher peak.

Line scribed 0.1 inch apart on plastic scale.
Figure 4

ROTATING BLANKING BAND ABOUT LAST END POINT

This

Not This

SCALLOPS OCCURRING AT END OF BLANKING BAND

End of Blanking Band

Count this scallop once and include in section where peak is highest
Figure 5

Procedure for Determining Profile Index

<table>
<thead>
<tr>
<th>Segment Length (miles)</th>
<th>Inches of Roughness Shown On Trace</th>
<th>Reported Roughness (inches/mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1.35</td>
<td>13.5</td>
</tr>
<tr>
<td>0.1</td>
<td>1.15</td>
<td>11.5</td>
</tr>
<tr>
<td>0.1</td>
<td>0.25</td>
<td>2.5</td>
</tr>
<tr>
<td>0.1</td>
<td>0.85</td>
<td>8.5</td>
</tr>
<tr>
<td>0.1</td>
<td>0.30</td>
<td>3.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.60</td>
<td>8.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.35</td>
<td>3.5</td>
</tr>
<tr>
<td>0.055 *</td>
<td>0.20</td>
<td>3.6(1)</td>
</tr>
<tr>
<td>0.855</td>
<td>5.60</td>
<td>6.5(2)</td>
</tr>
</tbody>
</table>

\[
\frac{0.20}{0.055} = 3.6
\]

\[
\frac{5.60}{0.855} = 6.5
\]

Example B

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.80</td>
<td>8.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.40</td>
<td>4.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.35</td>
<td>3.6(1)</td>
</tr>
<tr>
<td>0.037 *</td>
<td>0.15</td>
<td>===</td>
</tr>
<tr>
<td>0.337</td>
<td>1.70</td>
<td>5.0(2)</td>
</tr>
</tbody>
</table>

\[
\frac{0.35 + 0.15}{0.1 + 0.037} = 3.6
\]

\[
\frac{1.70}{0.337} = 5.0
\]

* See section (e)(5) of this test method.
PROFILOGRAPH REPORT OF PAVEMENT SMOOTHNESS

Project No. 75-98 K 1234-01 County Trego
Contractor John Doe Construction Company Pavement Type PCC
Station 153+00 to Station 168+00 Traffic Direction EB
No. of Lanes 2 Direction of Paving EB
Date Placed (corrected) 8-9-94 Date Tested 8-10-94
Tested and Evaluated by Norman Lee
Paving Action 9 inch Reinforced PCC

<table>
<thead>
<tr>
<th>Length (Miles)</th>
<th>Track 1 Roughness (Inches)</th>
<th>Track 1 Profile Index</th>
<th>Track 2 Roughness (Inches)</th>
<th>Track 2 Profile Index</th>
<th>Track 3 Roughness (Inches)</th>
<th>Track 3 Profile Index</th>
<th>Average Profile Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.75</td>
<td>7.5</td>
<td>0.65</td>
<td>6.5</td>
<td></td>
<td></td>
<td>7.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.35</td>
<td>3.5</td>
<td>0.40</td>
<td>4.0</td>
<td></td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>0.084</td>
<td>0.95</td>
<td>11.3</td>
<td>0.80</td>
<td>9.5</td>
<td></td>
<td></td>
<td>10.4</td>
</tr>
<tr>
<td>0.284</td>
<td>2.05</td>
<td>7.2</td>
<td>1.85</td>
<td>6.5</td>
<td></td>
<td></td>
<td>6.9</td>
</tr>
</tbody>
</table>

Weighted Daily Average Computation

\[
\text{Weighted Daily Average} = \frac{2.05 + 1.85}{2} = 1.95 \\
\text{Average} = \frac{3.90 \text{ inches / 2 tracks}}{0.084 \text{ mile} = 6.9 	ext{ Average inches/mile}}
\]

Bump Locations Track 2-None; Track 1-None

Certified by: Norman Lee
Title Chief Profilograph Pusher
Org's John Doe Const. Co.
Figure 7.

PROFILOGRAPH REPORT OF PAVEMENT SMOOTHNESS
KDOT Form 242 Back Side

This form shall be prepared and submitted, along with the profilogram, within two working days of the placement or correction of concrete pavement or one working day for bituminous pavement.

The type of report is as follows:
Information - For check testing by Ks DOT and other situations not required to have testing.
Initial - All required testing of pavement for the first time (may be the only one).
Intermediate - After some corrective action that has not yet been completed.
Final - After all corrective action has been completed.
Pavement Type - PCC, HR, BM-1, etc.
Traffic Direction and direction of paving - NB, SB, EB, or WB depending on the design traffic flow of the numbered route.
Number of Lanes - the number of lanes placed at one time.
Paving Action - Mill (2"), Hot Recycle (2"), BM-1 (1 1/2"), etc.
Always compute a weighted daily average Wdt Daily Avg =

Total count in inches
No. of tracks x length

Bump locations are by station.

Distribution
Field Office (1)
District Office (1)
Bureau of Const. & Maint. (1)
Pavement Surface Research Engineer (1)