502 - PORTLAND CEMENT CONCRETE PAVEMENT (NON-QC/QA)

SECTION 502

PORTLAND CEMENT CONCRETE PAVEMENT (NON-QC/QA)

Note: PCCP is considered NON-QC/QA when the bid item Quality Control Testing is not included in the contract.

502.1 DESCRIPTION

Construct portland cement concrete pavement (PCCP) on a prepared subgrade or base course.

<table>
<thead>
<tr>
<th>BID ITEMS</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Pavement (* Uniform) (AE) (**)</td>
<td>Square Yard</td>
</tr>
<tr>
<td>Concrete Pavement (* Variable) (AE) (**)</td>
<td>Square Yard</td>
</tr>
<tr>
<td>Early Strength Concrete Pavement (*Uniform) (AE) (**)</td>
<td>Square Yard</td>
</tr>
<tr>
<td>Early Strength Concrete Pavement (*Variable) (AE) (**)</td>
<td>Square Yard</td>
</tr>
</tbody>
</table>

* Thickness
** No entry denotes PCCP with mesh and dowel assemblies. "Plain" denotes PCCP without mesh and dowel assemblies. "NRDJ" denotes non-reinforced dowel jointed PCCP.

502.2 MATERIALS

Provide materials that comply with the applicable requirements.

Concrete and Grout ..DIVISION 400
Reinforcing Steel ..DIVISION 1600
Epoxy Coated Steel Bars for Concrete ReinforcementDIVISION 1600
Joint Sealants ..DIVISION 1500
Expansion Joint Filler ..DIVISION 1500
Concrete Curing Materials ..DIVISION 1400
Preformed Elastomeric Compression Joint SealsDIVISION 1500
Cold Applied Chemically Cured Joint SealantDIVISION 1500
Hot Type Joint Sealing CompoundDIVISION 1500
Epoxy Resin-Base Bonding System for ConcreteDIVISION 1700

Use the appropriate Type, Grade and Class of Epoxy as detailed in SECTION 1705.

502.3 CONSTRUCTION REQUIREMENTS

a. Preparation of the Subgrade. Before placing any surfacing material on any section, complete the ditches and drains along that section to effectively drain the highway. Trim the base or subgrade to the line, grade and typical cross-section as shown in the Contract Documents. Maintain the subgrade or base to the as-constructed condition under other bid items, repairing any encountered defects to the specifications of those bid items. Maintain the subgrade surface to readily drain at all times. Protect the subgrade from damage when handling materials, tools and equipment. Do not store or stockpile materials on the subgrade. Do not place material or lay pavement on a frozen or muddy subgrade, or when it is raining or snowing.

Lightly spray the subgrade or base with water to obtain a thoroughly moistened condition when the concrete is deposited on it. Do not puddle water on the grade.

Do not deposit any material until the subgrade or base has been checked and approved by the Engineer.

b. Slip Form Paving. When paving is performed with a slip form paving unit, use equipment as described in subsection 154.5.
Pave 24 feet wide mainline pavement in a single operation. Do not exceed 24 feet paving width in a single operation except as follows:

- The Contractor may pave a maximum of 2 lanes plus a 6-foot shoulder (30 feet maximum) in a single operation.
- For pavements of 3 lanes or more, pave a minimum of 2 lanes mainline (with the option of including a single shoulder for a maximum of 30 feet) in a single operation.
- Approval will be based on satisfactory performance of the Contractor’s operation.

Place ramps and auxiliary lanes/shoulders as shown in the Contract Documents.

Once the paving operation has started, provide adequate equipment and supply of materials to maintain continuous placement for any given working period. Keep all concrete conveying equipment clean.

Do not apply any tractive forces to the slip form paver, except that which is controlled from the machine.

Trim to grade the subgrade or surface of the base over which the tracks of the paver will travel. Do not disturb this surface with other equipment. If the equipment or method of operation requires the subbase to be wider than shown in the Contract Documents, place additional material to provide an adequate surface for the tracks of the paver. Upon completion of the paving operations, remove or repair any base material damaged by the slip form paver's tracks. All necessary construction and removal of this additional base material is subsidiary to other items of the contract.

Operate the paver continuously, stopping only when absolutely necessary. If the forward motion of the paver is stopped, immediately stop the vibrator and tamping elements.

Deposit the concrete on the grade in successive batches to minimize re-handling. Place concrete over and against any joint assemblies so the joint assembly is retained in its correct position. Spread the concrete using approved mechanical spreaders to prevent segregation and separation of the materials.

After striking the concrete off with the spreader, leave sufficient concrete in place to allow the final shaping by the use of screeds, templates and pans, depending on make, model and type of machines approved for use in the paving train. Adjust the paving units to meet the required final cross-section, minimizing the need to carry back concrete to fill voids or depressions. Adjust each screed or template so a uniform roll of concrete extends the full length of the screed or template and allows just enough concrete to pass under the unit to properly feed the next machine. Do not shove large volumes of concrete with the screed or template. Adjust the screed or template to maintain a uniform cross-section.

Use multiple spreaders for single and multiple lift operations. Place concrete ahead of the initial spreader strikeoff no more than 30 minutes ahead of the final spreader strikeoff.

The use of any paving machine in the paving train is contingent on its ability to finish the pavement satisfactorily to the required grade, section and specified degree of consolidation. The Engineer may at any time require the adjustment, repair or replacement of the machine for unsatisfactory performance.

Correct any edge slump of the pavement in excess of ¼ inch, exclusive of edge rounding, before the concrete hardens. Excessive edge slumping will be sufficient reason to discontinue paving until machinery (or mix) is properly adjusted or removed from the project.

When the machine finishing has been completed, check the surface with a straightedge a minimum of 10 feet in length before texturing. Operate the straightedge parallel to the pavement centerline, starting at the center and progressing outward. Advance in successive stages of less than ½ the length of the straightedge. At the Contractor’s option, this requirement may be eliminated when smoothness is to be determined by the profilograph.

c. Placing Reinforcement. Place pavement reinforcement at the locations shown in the Contract Documents. Use a sufficient number of approved metal, bar supports or pins to hold all dowel bars and tie bars in proper position as required by the Contract Documents.

Longitudinal joint tie bars and dowel bars may be installed mechanically if approved by the Engineer. The satisfactory placement of the bars depends on the ability of the Contractor’s operation to place and maintain the bars in their true position. When satisfactory placement is not obtained by mechanical means, the Engineer may require the tie bars and dowel bars be installed ahead of placing the concrete, and that they be securely held in their exact position by staking and tying.

Thoroughly coat each dowel with hard grease or other approved bond breaker as shown in the Contract Documents. The bond breaker coating shall not exceed 15 mils ± 5 mils in thickness when averaged over 3 points measured at the ¼ points on the bar at 90º intervals around the bar.
When reinforced concrete pavement is placed in 2 layers, strike off the entire width of the bottom layer to such length and depth that the sheet of fabric or bar mat may be laid full length on the concrete in its final position without further manipulation. Place the reinforcement directly on the concrete, then place the top layer of concrete, strike it off and screed it. Remove any portion of the bottom layer of concrete that has been placed more than 30 minutes, and replace it with fresh mixed concrete at the Contractor’s expense. When reinforced concrete is placed in 1 layer, the reinforcement may be positioned in advance of the concrete placement or it may be placed in the plastic concrete after initial spreading, by mechanical or vibratory means.

Place the wire mesh reinforcement in the pavement at the locations shown in the Contract Documents. When 2 layers of wire mesh reinforcement are required, support the bottom layer in the required position with bar chairs. Use separators for the top layer if the strike-off cannot be used properly for the operation. Lap the reinforcement as shown in the Contract Documents. Laps parallel to the centerline of the pavement are prohibited except for unusual width of pavement lanes or for irregular areas. If the Contract Documents do not show dimensions for laps, the minimum lap either perpendicular or parallel to the centerline of the pavement is 6 inches. Fasten or tie adjacent wire mesh sheets together to hold all parts of the wire mesh sheets in the same plane.

If a “wire pattern” appears on the surface of the fresh pavement, immediately modify placement procedures to eliminate the problem.

Use reinforcing steel free from detrimental materials that could impair the bond between the steel and concrete.

d. Consolidation and Finishing. Perform hand spreading with shovels, not rakes. Do not allow workers to walk in the fresh concrete with boots or shoes coated with earth or foreign substance.

Do not apply moisture to the surface of the concrete pavement unless the Engineer approves the use of additional water on the fresh concrete surface to lubricate the float of the longitudinal finisher. If unusual weather conditions require the addition of superficial water to the concrete surface, apply it only in the form of a fine, fog mist.

Consolidate and finish the concrete to the cross-section and elevation shown in the Contract Documents. Use vibrators or other approved equipment to consolidate each layer of concrete, when placed in more than 1 lift, or full depth if placed in 1 lift. Uniformly vibrate the concrete across the full width and depth of the pavement so that the density of pavement concrete is a minimum of 98% of the vibrated unit weight. The 98% density requirement may be eliminated on miscellaneous areas such as entrance pavement, median pavement and gore areas.

Vibrators, either of the surface type (pan or screed) or the immersion type (tube or spud) may be attached to the spreader, paver or finishing machine, or may be mounted on a separate carriage. Only operate the vibrators when the machine they are mounted on is moving forward. Do not operate hand vibrators more than 15 seconds, or less than 5 seconds in any one location unless approved otherwise by the Engineer. Place vibrators in and withdraw from concrete vertically in a slow deliberate manner. Check vibrator frequencies with the vibrator under load to comply with the frequencies shown in subsection 154.2d.

Maintain a uniform, continuous roll of concrete over the vibrators ahead of the strike-off. The height of the roll shall be approximately the same height as the thickness of the pavement being vibrated.

In order to obtain concrete consolidation in the vicinity of joint assemblies, the Engineer may require that these areas be hand vibrated with an immersion spud vibrator.

In the event the specified density is not attained, cease paving operations and make necessary adjustments to produce concrete to conform to the density requirements.

Use an approved nuclear density measuring device to monitor in-place density. Provide a moveable bridge and move it to test locations as required to allow the Inspector to work over the fresh concrete.

On projects or areas within projects where the use of conventional equipment is impracticable, other consolidation and finishing equipment may be used with approval of the Engineer.

e. Fixed Form Paving. At the Contractor’s option, the fixed form paving method may be used.

(1) Forms. Use straight, metal forms having adequate strength to support the equipment. Each section shall be a minimum of 10 feet in length. Use forms with a depth equal to the prescribed edge thickness of the concrete, a base width at least equal to the depth of the forms and without a horizontal joint. Use flexible or curved forms of proper radius for curves of 150 foot radius or less, except approved straight forms of 5 foot lengths may be used for curves of a radius from 75 to 150 foot. Flexible or curved forms must be approved by the Engineer. The Engineer may approve the use of wood forms in areas requiring hand finishing. Secure the forms in place to

500-22
502 - PORTLAND CEMENT CONCRETE PAVEMENT (NON-QC/QA)

withstand the impact and vibration of the consolidating and finishing equipment without visible spring or settlement. Extend flange braces outward on the base a minimum of \(\frac{3}{4} \) the height of the form. Remove forms with battered top surfaces or bent, twisted or broken forms. Do not use repaired forms until they have been inspected and approved by the Engineer. Do not use buildup forms, except where the total area of pavement of any specified thickness on the project is less the 2,000 square yards. Do not vary the top face of the form from a true plane more than \(\frac{1}{4} \) inch in 10 feet, and do not vary the vertical face of the form by more than \(\frac{1}{4} \) inch. The forms shall contain provisions for locking the ends of abutting form sections together tightly, and for secure setting.

(2) Base Support. Provide a foundation under the forms that is compact and true to the specified grade so that the whole length of the form will be set firmly in contact with the grade.

(3) Form Setting. Set forms sufficiently in advance of the point where concrete is being placed so that line and grade may be checked. After the forms have been correctly set, thoroughly tamp the grade mechanically at both the inside and outside edges of the base of the forms. Stake forms into place with a minimum of 3 pins for each 10 feet section. Place a pin at each side of every joint. Tightly lock form sections, free from play or movement in any direction. Do not deviate the form from true line by more than \(\frac{1}{4} \) inch at any point. No excessive settlement or springing of forms under the finishing machine is permitted. Clean and oil forms before the placing of concrete.

(4) Grade and Alignment. Check the alignment and grade elevations of the forms immediately before placing the concrete and make any necessary corrections. When any form has been disturbed or any grade has become unstable, reset and recheck the form.

(5) Placing Reinforcement and Consolidating and Finishing Concrete. Meet the requirements in subsections 502.3 c. and d.

(6) Removing Forms. Unless otherwise provided, do not remove forms from freshly placed concrete until it has set for a minimum of 12 hours, except auxiliary forms used temporarily in widened areas. Remove forms carefully to avoid damage to the pavement.

f. Texturing. Use texturing equipment and devices as described in subsection 154.7. Use a burlap drag as soon as all excess moisture has disappeared and while the concrete is still plastic enough to make a granular surface possible.

Following the dragging operation, use a mechanical device to make a final finish or texture by giving the surface of the plastic pavement a transverse or longitudinal tining as shown in the Contract Documents. Perform the operation at such time to minimize displacement of larger aggregate particles and before the surface permanently sets.

Small or irregular areas may be tined by hand methods.

On projects of less than 5,000 square yards, or projects with longitudinal tining, the tining and curing devices may be mounted on the same carriage when approved by the Engineer. Operations of this type will be based on satisfactory performance.

Before final texturing, finish the exposed edge of the pavement to a radius of \(\frac{1}{4} \) inch with an edger. Edge the interior longitudinal joints on multiple-lane pavement to a radius of \(\frac{1}{4} \) inch. Eliminate any tool marks appearing on the slab adjacent to the joints or edge of the slab. Do not disturb the rounding of the corner of the slab.

g. Joints.

(1) General. Construct joints according to the Contract Documents. Failure to construct the joints in the best possible manner will be cause for suspension of work until the cause of the defective work is remedied.

If existing pavement of any type is required to abut with the new pavement, and the termination of the removal is not at an existing joint, make the new joint by sawing the existing pavement full depth with a diamond saw before removal.

The objective is to create or form a plane of weakness in the fresh concrete before uncontrolled or erratic cracking occurs. The following methods are acceptable:

- Use concrete saws to saw all contraction joints no wider than the initial saw cut and to a depth of D/3 ± \(\frac{1}{4} \) inch. Extreme conditions could exist which make it impracticable to prevent erratic cracking by sawing the joints early. At the onset of the project, devise methods, with the approval of the Engineer, to control this cracking.

- Make a “plastic concrete cut” straight and well defined so it can be sawed out by the saw crew. The “plastic concrete cut” would replace the specified initial saw cut. Suggested procedures could be the use of a stiff metal parting strip, with or without handles that would be gently inserted in the fresh
concrete and removed, thereby parting the interlocking coarse aggregate and providing a plane of weakness.

- Cut the fresh concrete with a mason’s trowel and straightedge from a worker’s bridge. It is imperative that the “plastic concrete cut” joint and the second stage saw cut are in the same exact location.
- At the Contractor’s option, “early entry” saws may be used based on satisfactory performance and depth of cut recommended by the equipment manufacturer.
- Procedures to control erratic cracking are not limited to these examples.

Edge any transverse joint requiring hand finishing and edging with a tool having a radius of \(\frac{1}{8} \) inch. Do not indent the surface of the pavement with the horizontal face of the edger.

(2) Pressure Relief Joints. Install pressure relief joints according to the bridge approach details in the Contract Documents.

Form or saw openings for the joint material approximately 1 ¾ inches wide for the 2 inch joint and approximately 3 ¾ inches wide for the 4 inch joint at the locations shown in the Contract Documents. Use the lubricant adhesive as recommended by the manufacturer of the pressure relief joint material.

Just before the installation of the joint material, clean the faces of the joint by sandblasting, followed by an air blast to clean all dust from joint faces.

The Engineer may approve pre-positioning of the 2 inch material if adequate means are taken to obtain proper placement and retention, and if deformation of the material does not occur when the fresh concrete is placed against it.

Use a foam spacer block beneath the 4 inch joint filler material to maintain the specified grade. The spacer block is an easily compressed foam material cut to fill the void beneath the joint filler.

(3) Contraction Joints. Install contraction joints of the type, dimensions and spacing shown in the Contract Documents.

Stretch a stringline along the centerline of the joint, or otherwise adequately mark it to assure dowel bar joint assembly alignment.

Install the dowel bar joint assembly so the centerline of the assembly is perpendicular to the centerline of the slab, and the dowels lie parallel to the slab surface and slab centerline. Place concrete so it will not displace or disarrange the joint assembly. Mark the location of contraction joints to assure the joints are sawed in the proper location.

(4) Longitudinal Joints. Construct longitudinal joints according to the Contract Documents. When sawed joints are specified or used, provide approved guide lines or devices to cut the longitudinal joint on the true line as shown in the Contract Documents. Perform the sawing of longitudinal joints at a time that will prevent erratic or uncontrolled cracking. When “plastic concrete cut” methods are used, no sawing or widening of the joint will be required to make a sealant reservoir.

(5) Construction Joints. Make a butt construction joint perpendicular to the centerline of the pavement at the close of each day’s work, or when the process of depositing concrete is stopped for a length of time sufficient for the concrete to take its initial set. Form this joint by using a clean header having a nominal thickness of 2 inches, and minimum cross-sectional area equal to pavement thickness by pavement width. Cut the header true to the crown of the finished pavement. Accurately set and hold it in place in a plane at right angles to centerline and perpendicular to the surface of the pavement.

Protect the top surface of the header with steel. Securely fasten a trapezoidal piece of metal or wood approximately 2 inches wide and a minimum of 1 inch in depth on the face of the header, along the center of the header to form a grooved or keyed joint.

With approval of the Engineer, the Contractor may pave beyond the joint location a distance to maintain the line and grade. Saw the construction joint when the concrete has hardened. Drill holes for reinforcing tie bars and epoxy the bars in-place. Place fresh concrete against the previously placed concrete taking care to avoid injury to the edge. Vibrate the concrete to obtain an interlocking joint and prevent a honeycombed face of the joint. The additional concrete, removal of debris and other work created by this alternative is at the Contractor’s expense.

Unless shown otherwise in the Contract Documents, do not place any construction joint within 5 feet of an expansion, contraction or other construction joint.

(6) Special Joint Construction. Construct special joints as shown in the Contract Documents or as ordered by the Engineer around drainage, utility and other structures located within the concrete pavement boundaries. Hold temporary forms securely in place during the concrete placement operation.
(7) Joint Construction. Construct all joints as shown in the Contract Documents. Repair or replace any curing medium damaged during joint construction. Construct joints as follows:

(a) Induced Plane of Weakness. The first saw cut is a relief cut at the proper joint location, approximately \(\frac{1}{8} \) inch wide and to the full joint depth as shown in the Contract Documents (D/3 ± ¼ inch). Make the relief cut as soon as the concrete has hardened enough so that no excess raveling or spalling occurs, but before any random cracks develop. The sequence of the relief sawing is at the Contractor’s option, provided all relief sawing is completed before random cracking develops. Use suitable guide lines or devices to cut the joint straight and in the correct location. Repair curing membrane damaged during sawing as directed by the Engineer. See subsection 502.3g.(1) for alternate methods to the first stage sawing.

(b) Reservoir Construction. Do not perform widening of the relief joints to full width until the concrete is a minimum of 48 hours old. Delay it longer if the sawing causes raveling of the concrete. If second stage sawing is performed before completion of the curing period, maintain the cure by use of curing tapes, plastic devices or other materials approved by the Engineer. Center the joint groove over the relief cut, and saw it to the dimensions shown in the Contract Documents. Should any spalling of the sawed edges occur that would detrimentally affect the joint seal, patch it with an approved epoxy patching compound and allow it to harden before installing the joint material. Make each patch true to the intended neat lines of the finished cut joint.

(8) Cleaning Joints.

(a) Immediately clean freshly cut sawed joints by flushing with a jet of water under pressure and other necessary tools to remove the resulting slurry from the joint and immediate area.

(b) To clean the joints, use air compressors equipped with suitable traps capable of removing all surplus water and oil from the compressed air. The Engineer will check the compressed air for contamination, daily. When contaminated air is found to exist, work will be stopped until suitable adjustments are made, and the air stream is found to be free of contaminants.

(c) Just before applying the hot or cold joint sealant, complete a final cleaning by air blasting to clean incompressibles from the joint.

(d) Before installing preformed elastomeric joint seals, use water or sandblasting equipment to clean the seal reservoir of the transverse joint a minimum of the vertical height of the installed elastomeric joint material plus \(\frac{1}{2} \) inch measured from the pavement surface. Use a multiple pass technique until the surfaces are free of dirt, curing compound or any residue that might prevent ready insertion of the seal, or uniform contact with the concrete. (Note: These seals are held in place by compressive forces and friction acting on the faces of the joint, not chemical bonding as with other joint sealants.) After final cleaning, and immediately before installing the seal, blow out the joint seal reservoir with compressed air until it is free of debris and visible water.

(9) Sealing Joints. The joint location, size and configuration is shown in the Contract Documents. Use applicable materials to obtain the required joint sealant configuration. Seal transverse pavement joints with preformed elastomeric compression joint seals, unless shown otherwise in the Contract Documents. Seal longitudinal pavement joints full depth with either a cold applied chemically cured joint sealant or a hot joint sealing compound. Use only 1 type of longitudinal joint sealant on a project, unless otherwise approved by the Engineer. Seal joints before opening to traffic. For opening to construction traffic, see subsection 502.3i.(3)(a).

When using cold applied chemically cured joint sealant, hot joint sealing compound or preformed elastomeric compression joint seals, arrange for a technical representative of the manufacturer to be present during installation of the joint seal to provide guidance on cleaning, preparation of the joint and installation of the seal. Keep the manufacturer’s technical representative on the project until Contractor and KDOT personnel have been thoroughly trained in the proper installation of the material. The Engineer may waive this requirement for Contractors that are experienced in installing the type and brand of material being used. Provide the Engineer with a resumé of experience for evaluation.

(a) Cold Applied Chemically Cured Joint Sealants. Do not seal joints until they are clean and dry, and the pavement has attained the age recommended by the manufacturer of the sealant. Do not apply sealant to damp concrete, or install it during inclement weather. Place the sealer full depth in close conformity with dimensions shown in the Contract Documents. Any deviation will be cause for rejection of the joint until satisfactory corrective measures are taken. Do not apply joint sealant when the ambient air temperature is below 40ºF, or as specified by the manufacturer.
Apply the joint sealant by an approved mechanical device. Any failure of the joint material in either adhesion or cohesion will be cause for rejection. Repair the joint to the Engineer’s satisfaction.

Some cold applied, chemically cured sealants are not self-leveling and will not position properly in the joint under its own weight. Tool the sealant surface as shown in the Contract Documents. Accomplish tooling before a skin forms on the surface. The use of soap or oil as a tooling aid is prohibited.

After a joint has been sealed, promptly remove all surplus joint sealer from the pavement or structure surfaces.

Do not permit traffic over sealed joints until the sealer is tack free, or until debris from traffic can not imbed into the sealant.

(b) Hot Applied Joint Sealing Compound. Do not seal joints until they are clean and dry, and the pavement has attained the age recommended by the manufacturer of the joint sealing compound. Install joint sealing compound according to the manufacturer’s recommendations.

Completely clean out the application unit when changing brands of materials, or if the material exhibits any sign of changes in application characteristics, polymer or oil separation, balling or any signs of jelling. If the application unit contains compatible material from a previous project at start-up, provide the Engineer a certification covering the material in the application unit, including the manufacturer, type, etc. Material that can not be identified and certified shall be completely cleaned out before start-up.

After a joint has been sealed, promptly remove all surplus joint sealer from the pavement or structure surfaces.

Do not permit traffic over sealed joints until the sealer is tack free, or until debris from traffic can not imbed into the sealant.

(c) Preformed Elastomeric Joint Seals. Concrete that has reached an age that permits proper sawing and cleaning without causing deterioration of the joint edges and joint faces, is considered acceptable for seal installation.

Under normal construction procedures, seal transverse joints full width with no splices made in the preformed joint seal. However, under phased construction of widenings, where the lanes placed earlier have been opened to traffic, the preformed joint seal may be spliced at the construction joint. When the existing seal is peeled back to saw the construction joint, clean it, reapply the lubricant/adhesive and reinstall as soon as possible. After the new seal is installed, place the longitudinal joint sealant through the intersection with the transverse joint, with the transverse seals butted in. Place the longitudinal sealant to encase and seal the ends of the preformed seals.

Install the joint seal with a machine especially designed to compress and install the sealant in an upright position, without cutting, nicking, distorting or otherwise damaging the seal. Apply lubricant to the concrete or the preformed seal (or both), and install the seal in a substantially compressed condition. Place the top of the seal at a depth below the finished surface of the pavement recommended by the manufacturer.

Use a method of installation such that the joint seal will not be stretched or compressed longitudinally more than 3% of the length, unless stated otherwise in the manufacturer’s instructions. The method of installation will be checked for stretching or compression by comparing the distance between 2 marks on the surface of the seal measured before and after the installation. If the check indicates stretching or compression beyond the limits stated above, modify the method of installation to correct the situation. The Contractor may proceed slightly out of specification for a short distance under the supervision of the manufacturer’s technical representative, while making corrections and adjustments to return to specification limits. This material may remain in place, provided the stretching does not exceed 5% and the Contractor makes a good faith effort to correct the problem. Once the machine is in proper adjustment and the installation is proceeding satisfactorily, further checks (approximately every 100 joints) will be made to assure proper installation.

Remove any joint seal not conforming to the above stated limits of installation and replace with new material. No seal may be reused after being removed for any reason.
h. Hand Finishing. Hand finishing methods shall be held to a minimum. Generally, hand methods of placement and finishing will be permitted as follows:

- For pavement when a breakdown of some portion of the paving train occurs, making the hand finishing of that portion of the concrete already in place necessary.
- For pavement lanes that may be too narrow or a length too short to accommodate a full paving spread.
- For all irregular shaped areas.
- For special approach sections to bridges, widened portions at bridges, intersections and sections widened beyond traffic lanes.
- When the dimensions of the work make the use of a complete power operated paving impossible, or impracticable.

For uniform width areas or transition width areas using false forms, finish handwork with a mechanical finishing machine or approved vibrating screed, whenever possible.

Use spud hand vibrators on any area considered impracticable to vibrate with a vibrating screed. Approved metal or wood floats may be used if needed to help close an open or porous surface condition.

Continue the operation of consolidation and screeding or striking off the concrete until the concrete is uniformly consolidated and the surface is true to line, grade and cross-section.

After the pavement has been properly struck off, straightedge the pavement for trueness and finish it. Use a burlap drag to remove surface straightedge marks. The burlap drag may be pulled by hand, but the results shall be similar to that on the mainline pavement.

Manual methods may be used for texturing hand finished pavement areas. Where applicable, the tined texture applies. Use a metal comb with dimensions and spacing shown in subsection 154.7b. Obtain a finished textured surface similar to that produced mechanically.

On miscellaneous areas such as entrance pavement, median pavement and gore areas, texturing with the metal comb may be eliminated. Final finish may be attained by the use of a drag that consists of a seamless strip of damp burlap, cotton fabric or other suitable material capable of producing a uniform surface of gritty texture.

i. Protection and Curing of Concrete. Cure the pavement by using burlap, liquid membrane-forming compounds, white polyethylene sheeting, concrete curing blankets or reinforced white polyethylene sheeting. Failure to provide proper curing is cause for immediate suspension of the concreting operations.

(1) Burlap, Concrete Curing Blankets, White Polyethylene Sheeting and Reinforced White Polyethylene Sheeting.

Place the curing material on the pavement immediately after the pavement has been finished, and the concrete has hardened sufficiently to avoid harmful marring of the surface, yet early enough to prevent undue loss of moisture from the concrete. If the pavement becomes dry before the curing material is placed, moisten the concrete with a fine spray of water. Place burlap-polyethylene blankets with the dampened burlap side down. Dampen burlap and place on the surface. Keep burlap damp throughout the entire curing period. Lap adjacent units of curing materials approximately 18 inches. Upon removal of the forms, extend the material to completely cover the full depth of the exposed pavement.

Weight the curing material down using continuous windrows of earth placed along the sides and edges of the pavement and transversely across the pavement on the laps to cause the material to remain in contact with the covered surface throughout the curing period. Other methods may be used with approval of the Engineer.

Walking on the pavement surface to place the curing material is prohibited. Walking on the curing material is prohibited until the pavement has cured sufficiently to prevent damage to the surface. Leave the curing material in place for a minimum of 4 days, unless otherwise directed by the Engineer. Immediately repair any tears or holes appearing in the material during the curing period, or replace it with material in good condition.

The material may be reused, provided it is kept serviceable by proper repairs, and if in the judgment of Engineer it will provide water retention during the curing period.

(2) Liquid Membrane-Forming Compounds. After finishing operations have been completed and immediately after the free water has left the surface, completely coat and seal the surface of the slab with a uniform layer of white membrane curing compound. Apply the compound in 1 application at a minimum rate of 1 gallon per 150 square feet of surface. Thoroughly mix the curing compound at all times during usage. Do not thin the white membrane curing compound.
Protect the treated surface from injury a minimum of 4 days, unless otherwise directed by the Engineer. If the newly coated film is damaged in any way, apply a new coat of material to the affected areas equal in coverage to that specified for the original coat. A minimum of foot traffic will be permitted on the dried film as necessary to properly carry on the work, provided any damage to the film is immediately repaired by application of an additional coat of compound.

Immediately after the forms are removed (fixed form and slip form), coat the entire area of the sides of the slab with white membrane curing compound at the rate specified for the pavement surface, regardless of whether or not further concrete placement will be made against the pavement edge. Approved hand spray equipment will be permitted only for the application of curing compound on the sides of the slab, for repairing damaged areas and for hand finished areas. Repair any damaged areas caused by joint sawing.

(3) Opening to Traffic. No motorized traffic is allowed on the pavement until all of the following conditions are met.

(a) Construction Traffic Only.
 - The flexural strength of the pavement shall meet or exceed 450 psi. Determine the flexural strength of the pavement by testing flexural strength specimens utilizing the third point loading method, or by use of a calibrated maturity meter.
 - If testing is not done, observe a 4 day curing period before allowing motorized traffic on the pavement.
 - Provide protection to keep foreign material out of the unsealed joints by an approved method.
(b) All Traffic. In addition to subsection 502.3i.(3)(a), the joints shall be sealed according to subsection 502.3g.(9).

The Contractor may, at own expense, increase the cement content from the minimum shown in DIVISION 400 to accelerate the strength gain of the PCCP.

(4) Cold Weather Curing. Maintain the concrete pavement at a minimum temperature of 40ºF, as measured along the surface of the concrete, for a minimum of 4 days after placing. When the ambient air temperature is expected to drop below 35ºF, anytime during the curing period, take precautions to maintain the concrete temperature. Keep a sufficient supply of approved moisture barrier material, other than liquid curing compound, and suitable blanketing material, such as straw, hay and burlap close by. Be prepared to cover the pavement with a moisture barrier and protect all pavement less than 4 days old with blanketing material. Remove, dispose of and replace concrete damaged by cold weather, as determined by the Engineer.

(5) Early Strength Concrete Curing. The curing period shall conform to the requirements specified for regular concrete pavement in subsection 502.3.i.(3). Construct joints according to the manufacturer’s recommendations for early strength concrete pavement.

j. Cold Weather Limitations. If concrete is placed in cold weather, comply with DIVISION 400.

k. Repair of Defective Pavement Slabs.

(1) The following applies to both new reinforced and non-reinforced concrete pavement.

It is the responsibility of the Contractor to repair any spalled, cracked or broken panels as specified hereinafter at no cost to KDOT. Properly seal the joints of the repaired or replaced panels.

Repair spalls, not addressed in subsection 502.4g.(7)(b), by making a saw cut a minimum of 1 inch outside the spalled area to a minimum depth of 2 inches. In no case shall an individual patch of a spall be less than 1 square foot with no dimension less than 1 foot. The interior angles formed by the intersection of adjacent sides of the patch shall be a minimum of 60º. When the spalled area abuts a joint, make the saw cut to a depth of 2 inches or 1/6 the slab thickness, whichever is greater. Chip out the concrete between the saw cut and the joint or primary crack to solid concrete. Do not use chipping hammers greater than 15 pounds. Thoroughly clean all loose material from the formed cavity. Apply a coat of an approved concrete bonding epoxy to the dry, cleaned surface of all sides of the cavity, except the joint. Apply the epoxy by scrubbing the material into the surface with a stiff bristle brush. Place portland cement concrete, epoxy resin concrete or mortar, immediately following application of the epoxy, according to the manufacturer’s recommendations. If the spalled area to be patched abuts a working joint, use an insert or other bond breaking medium during the repair work to maintain working joints.

As required, determine the depth of crack penetration by inspection of cores drilled at the Contractor’s expense.

Remove and replace major honeycombed areas found after removal of the forms. Removed areas or sections so removed shall be a minimum of 6 feet in length if less than full width of the lane involved. When it is
necessary to remove a section of pavement, also remove and replace any remaining portion of the slab adjacent to the joints that is less than 6 feet in length.

(2) The following applies to new reinforced dowel jointed PCCP.

When a single full-depth transverse crack falls within the middle \(\frac{1}{3} \) of the panel, no corrective work will be required.

Should a second full-depth crack develop within the middle \(\frac{1}{3} \) of the panel, remove and replace the panel to the nearest planned contraction joint, eliminating both cracks.

If the location of the mid-panel full-depth crack is within 6 feet of the boundaries of the area to be repaired, extend the area to be repaired to include the mid-panel crack.

When any portion of a full-depth crack falls outside the middle \(\frac{1}{3} \) of the panel, remove and replace the portion of panel between the contraction joint and the crack. Make 1 full-depth saw cut parallel to the contraction joint on the mid-panel side of the crack to be removed. Make another cut in the adjacent panel, parallel to the contraction joint, clear of the basket assembly, but not less than 6 feet from the first cut. Remove the cracked section and basket assembly. Drill holes in both sawed faces, and insert bars to make 2 contraction joints. Use dowels of the same size and spaced the same distance as those shown in the Contract Documents. Drill bar holes \(\frac{1}{4} \) inch \(\pm 0.05 \) inch larger than the diameter of the bar and fill them with epoxy or grout and insert the new dowel. Support the free ends of the bars parallel to the pavement surface until the epoxy or grout has set, obtaining proper alignment of the bar. Apply grease or an approved bond breaker to the free ends.

If the boundaries of consecutive areas to be repaired are less than 6 feet apart, also remove and replace the areas between the patches.

Completely remove and replace pavement panels (area between contraction joint and contraction joint) containing both transverse and longitudinal cracks (separating the panel into 4 or more parts) through the full depth of the slab.

Saw off the longitudinal joint tie bars at the longitudinal joint. Drill holes midway between the existing bars and insert tie bars to make a new tied longitudinal hinged joint. Use tie bars of the same size and spacing as those in the Contract Documents. Drill bar holes \(\frac{1}{4} \) inch \(\pm 0.05 \) inch larger than the diameter of the bar and fill them with epoxy or grout and insert new tie bars.

(3) The following applies to new non-reinforced dowel jointed PCCP.

(a) Transverse and Diagonal Cracks. Remove and replace pavement panels containing any transverse or diagonal crack according to the following:

- Make a full-depth saw cut in the abutting panel nearest to the crack, parallel to the contraction joint, just clear of the basket assembly (removing the existing dowel basket), and a second cut on the opposite side of the crack.
- The minimum longitudinal length of a patch is 6 feet.
- Do not permit a patch to fall within 6 feet of a contraction joint.
- Drill holes and insert dowel bars to make new contraction joints. Use dowels of the same size and spaced the same distance as shown in the Contract Documents. Drill bar holes \(\frac{1}{4} \) inch \(\pm 0.05 \) inch larger than the diameter of the bar and fill with epoxy or portland cement grout and insert the new dowel. Support the free ends of the bars until the epoxy or grout has set to obtain proper alignment of the bar. Apply grease or an approved bond breaker to the free ends.
- Do not allow the distance between dowelled contraction joints to exceed 18 feet.
- Saw off the longitudinal joint tie bars at the longitudinal joint. Drill holes midway between the existing bars and insert tie bars to make a new tied longitudinal hinged joint. Use tie bars of the same size and spacing as those in the Contract Documents. Drill bar holes \(\frac{1}{4} \) inch \(\pm 0.05 \) inch larger than the diameter of the bar and fill them with epoxy or grout and insert new tie bars.

(b) Longitudinal Cracks. Repair or remove and replace pavement panels that contain longitudinal cracks, according to the following:

- Repair longitudinal cracks that are within 3 inches of the planned longitudinal joint for their entire length with a partial depth patch as specified for spall in subsection 502.3k.(1), except make the transverse dimension of the patch 6 inches and saw cuts to \(D/3 \pm \frac{1}{4} \) inch.
• For longitudinal cracks between 3 and 6 inches from the planned longitudinal joint, inject the entire planned longitudinal joint full depth with epoxy through the length of the longitudinal crack.

• Repair longitudinal cracks that are 6 inches or more from the planned longitudinal joint by removing and replacing pavement panels. The Engineer may permit cross-stitching rather than replacing the panels.

1. Protection of Pavement from Rain. Before placing PCCP, prepare and submit to the Engineer for approval, a Protection Plan to address the onset of rain during concrete placement. As a minimum, the plan shall include protective covering and side forms available at the project site at all times to protect the surfaces and edges of the newly placed concrete pavement. Polyethylene, burlap or other covering materials may be used. Side forms may be of wood or steel and shall have a depth a minimum of the thickness of the pavement. Specify the location of the storage site in order that a review of the protective materials may be conducted by the Engineer.

 Include the type and amount of protective materials as well as the methods proposed to protect the pavement.

 When rain appears imminent, stop all paving operations and initiate the Protection Plan. Extend the covering back to the point where the rain will not indent the surface. Exercise care to prevent unnecessary damage to the surface with the covering.

m. Pavement Thickness and Tolerance. Make the required corrections for pavement smoothness before making the pavement thickness determinations. Thickness will be determined by average caliper measurements of cores taken by the Engineer. Random cores will be taken for each 1,000 square yard section paved per day. The 1,000 square yard sections will be calculated on a lane (9 to 15 feet width) basis for main line paving, ramp driving areas, lane widenings, and acceleration or deceleration lanes. When sections would require taking cores with an area less than 250 square yards, include that area with the days full section. Sections with an area greater than 250 square yards will stand as individual sections. The Engineer will not include bridge deck wearing surfaces or bridge approach paving in the 1,000 square yard calculation. Cores will not be taken in gore areas, intersection curb returns, entrances, shoulders, median, widenings less than 5 feet in uniform width and irregular areas less than 500 square yards.

 Cores will not be taken for projects with less than 2,500 square yards of concrete pavement.
502 - PORTLAND CEMENT CONCRETE PAVEMENT (NON-QC/QA)

Treat pavement less than the thickness specified in the Contract Documents as described in Table 502-1.

<table>
<thead>
<tr>
<th>TABLE 502-1: PCCP THICKNESS TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Thickness in a Section (inch)</td>
</tr>
<tr>
<td>Core measurement is 0.0 to 0.2 inches less than specified thickness.</td>
</tr>
<tr>
<td>Core measurement is (0.2) to 0.99 inches less than specified thickness.</td>
</tr>
<tr>
<td>Core measurement is a minimum of 1.0 inch less than the specified thickness.</td>
</tr>
</tbody>
</table>

n. Pavement Smoothness. Evaluate pavement smoothness for pay according to SECTION 503.

502.4 MEASUREMENT AND PAYMENT

a. Plan Quantity Measurement. The quantities of concrete pavement for which payment will be made are the quantities shown in the Contract Documents for the traveled way and the various paved approaches, exits and interchanges, provided the project is constructed essentially to details shown in the Contract Documents.

When the Contract Documents have been altered, or when a disagreement exists between the Contractor and the Engineer as to the accuracy of the Contract Document quantities in any location or the entire project, either party has the right to request and cause the quantities involved to be measured according to subsection 502.4b.

b. Measured Quantities. The quantity to be paid for under this item will be the number of square yards of concrete pavement as measured in-place. The width for measurement will be the width of the pavement shown on the typical cross-section of the Contract Documents, additional widening where added or as otherwise directed in writing by the Engineer. The length will be measured horizontally along the centerline of each roadway or ramp.

c. Excavation Included in Contract. On projects where the grading and the pavement or base construction is included in the same contract, the Engineer will not measure additional excavation required to obtain the specified subgrade elevation.

d. Sawing and Sealing Joints. The Engineer will not measure this work for separate payment. All costs of complying with the requirements specified herein are included in the contract price for the concrete pavement in which the joints are located.
e. **Water.** The Engineer will not measure water used in dust control on haul roads, around plant installations, etc.

f. **Price Adjustments.** When the average thickness of the pavement determined in subsection 502.3l. is deficient by more than 0.2 inch based on the thickness required by the Contract Documents a price adjustment for deficient concrete pavement thickness will be made according to **TABLE 502-2** for the for the entire section represented. Payment for "Concrete Pavement Thickness Deficiency" will be shown as an added item to the contract.

<table>
<thead>
<tr>
<th>Deficiency in thickness as determined by cores (inches)</th>
<th>Percent of contract unit price for pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 to 0.20</td>
<td>100</td>
</tr>
<tr>
<td>0.21 to 0.30</td>
<td>75</td>
</tr>
<tr>
<td>0.31 to 0.40</td>
<td>65</td>
</tr>
<tr>
<td>0.41 to 0.50</td>
<td>55</td>
</tr>
<tr>
<td>0.51 to 0.75</td>
<td>45</td>
</tr>
<tr>
<td>0.76 to 1.00</td>
<td>35</td>
</tr>
</tbody>
</table>

g. **General Payment.** Payment for "Concrete Pavement" and "Early Strength Concrete Pavement" with pay adjustments as specified above is full compensation for the work specified.