KANSAS DEPARTMENT OF TRANSPORTATION
SPECIAL PROVISION TO THE
STANDARD SPECIFICATIONS, 2007 EDITION

Delete the entire SECTION 1102 and replace with the following:

SECTION 1102

AGGREGATES FOR CONCRETE NOT PLACED ON GRADE

1102.1 DESCRIPTION

This specification is for coarse aggregates, intermediate aggregates, fine aggregates, mixed aggregates (both coarse and fine material) and miscellaneous aggregates for use in construction of concrete not placed on grade.

For Intermediate Aggregates and Mixed Aggregates, consider any aggregate with 30% or more retained on the No. 8 sieve to be Coarse Aggregate.

1102.2 REQUIREMENTS

a. Coarse Aggregates for Concrete.

(1) Composition. Provide coarse aggregate that is crushed or uncrushed gravel or crushed stone. (Consider limestone, calcite cemented sandstone, rhyolite, quartzite, basalt and granite as crushed stone). Mixtures utilizing siliceous aggregate not found on PQL 3.1 will require supplemental cementitious materials to prevent Alkali Silica Reactions. Provide the results of mortar expansion tests of ASTM C 1567 using the project’s mix design concrete materials at their designated percentages. Provide a mix with a maximum expansion of 0.10% at 16 days after casting. Provide the results to the Engineer at least 15 days before placement of concrete on the project.

(2) Quality.

(a) Provide coarse aggregates for structures (SCA) and other applications that comply with TABLE 1102-1.

<table>
<thead>
<tr>
<th>Concrete Classification</th>
<th>Soundness (min.)</th>
<th>Wear (max.)</th>
<th>Absorption (max.)</th>
<th>Acid Insol. (min.)(^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade xx (AE)(SW)(^1)</td>
<td>0.90</td>
<td>40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Grade xx (AE)(SA)(^2)</td>
<td>0.90</td>
<td>40</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>Grade xx (AE)(AI)(^3)</td>
<td>0.90</td>
<td>40</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>Grade xx (AE)(PB)(^4)</td>
<td>0.90</td>
<td>40</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>BDWS(^5)</td>
<td>0.95</td>
<td>40</td>
<td>-</td>
<td>85</td>
</tr>
<tr>
<td>All Other Grades</td>
<td>0.90</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\) Grade xx (AE)(SW) - Structural concrete with select coarse aggregate for wear.

\(^2\) Grade xx (AE)(SA) - Structural concrete with select coarse aggregate for wear and absorption.

\(^3\) Grade xx (AE)(AI) - Structural concrete with select coarse aggregate for wear and acid insolubility.

\(^4\) Grade xx (AE)(PB) - Structural concrete with select aggregate for use in prestressed concrete beams.

\(^5\) BDWS - Bridge Deck Wearing Surface.

\(^6\) Acid Insoluble requirement does not apply to calcite cemented sandstone.

(3) Product Control.

(a) Provide Structural Coarse Aggregates that comply with TABLE 1102-2.
TABLE 1102-2: GRADING REQUIREMENTS FOR COARSE AGGREGATES

<table>
<thead>
<tr>
<th>Type</th>
<th>Composition</th>
<th>Percent Retained - Square Mesh Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1½"</td>
</tr>
<tr>
<td>SCA-2</td>
<td>Siliceous Gravel or Crushed Stone</td>
<td>0</td>
</tr>
<tr>
<td>SCA-3</td>
<td>Siliceous Gravel or Crushed Stone</td>
<td>0</td>
</tr>
<tr>
<td>SCA-4*</td>
<td>Siliceous Gravel or Crushed Stone</td>
<td>0</td>
</tr>
<tr>
<td>SCA-5</td>
<td>Crushed Siliceous Gravel and Crushed Stone</td>
<td>0</td>
</tr>
</tbody>
</table>

*Use with Basic Aggregate to produce Mixed Aggregate.

(b) Deleterious Substances. Maximum allowed deleterious substances by weight are:
- Material passing the No. 200 sieve (KT-2) .. 2.0%
- Clay lumps and friable particles (KT-7) ... 1.0%
- Coal (AASHTO T 113) .. 0.5%
- Shale or Shale-like material (KT-8) .. 0.5%
- Sticks (wet) (KT-35) ... 0.1%
- Sum of all deleterious .. 3.0%

(c) Uniformity of Supply. Designate or determine the fineness modulus (grading factor) according to the procedure listed in the Construction Manual Part V, Section 17 before delivery, or from the first 10 samples tested and accepted. Provide aggregate that is within ±0.20 of the average fineness modulus.

(d) Proportioning of Coarse and Fine Aggregate. Combine fine and coarse aggregates in a 50%-50% ratio by weight. Adjustments to improve workability may be made when approved by the Engineer. Use of a proven optimization method such as the ACI 302.1 method can provide adequate justification.

(4) Handling Coarse Aggregates.

(a) Segregation. Before acceptance testing, remix all aggregate segregated by transportation or stockpiling operations.

(b) Stockpiling.
- Stockpile accepted aggregates in layers 3 to 5 feet thick. BERM each layer so that aggregates do not "cone" down into lower layers.
- Keep aggregates from different sources, with different grading, or with a significantly different specific gravity separated.
- Transport aggregate in a manner that maintains uniform gradation.
- Do not use aggregates that have become mixed with earth or foreign material.
- Stockpile or bin all washed aggregate produced or handled by hydraulic methods for 12 hours (minimum) before batching. Rail shipment exceeding 12 hours is acceptable for binning provided the car bodies permit free drainage.
- Provide additional stockpiling or binning in cases of high or non-uniform moisture.

(1) Composition. Provide intermediate aggregate for mixed aggregates (IMA) that is crushed stone, natural occurring sand, or manufactured sand.

(2) Quality. Provide IMA complying with subsection 1102.2.a.(2) or 1102.2.c.(2).

(3) Product Control.

(a) Size Requirement. Provide IMA grading as necessary to obtain specified MA grading and any coarseness factor and workability requirements.

(b) Uniformity of Supply. Designate or determine the fineness modulus (grading factor) according to the procedure listed in the Construction Manual Part V, Section 17 before delivery, or
from the first 10 samples tested and accepted. Provide aggregate that is within ±0.20 of the average fineness modulus.

(4) Handling Coarse Aggregates.
(a) Segregation. Before acceptance testing, remix all aggregate segregated by transportation or stockpiling operations.
(b) Stockpiling.
- Keep aggregates from different sources, with different gradings, or with a significantly different specific gravity separated.
- Transport aggregate in a manner that maintains uniform gradation.
- Do not use aggregates that have become mixed with earth or foreign material.
- Stockpile or bin all washed aggregate produced or handled by hydraulic methods for 12 hours (minimum) before batching. Rail shipment exceeding 12 hours is acceptable for binning provided the car bodies permit free drainage.
- Provide additional stockpiling or binning in cases of high or non-uniform moisture.

c. Fine Aggregates for Concrete.
(1) Composition.
(a) Type FA-A. Provide either singly or in combination natural occurring sand resulting from the disintegration of siliceous or calcareous rock, or manufactured sand produced by crushing predominately siliceous materials.
(b) Type FA-C. Provide crushed siliceous aggregate or chat that is free of dirt, clay, and foreign or organic material.

(2) Quality.
(a) Mortar strength and Organic Impurities. If the DME determines it is necessary, because of unknown characteristics of new sources or changes in existing sources, provide fine aggregates that comply with the following:
- Mortar Strength (Mortar Strength Test, KTMR-26). Compressive strength when combined with Type III (high early strength) cement:
 - At age 24 hours, minimum .. 100%*
 - At age 72 hours, minimum .. 100%*
 *Compared to strengths of specimens of the same proportions, consistency, cement and standard 20-30 Ottawa sand.
- Organic Impurities (Organic Impurities in Fine Aggregate for Concrete Test, AASHTO T 21). The color of the supernatant liquid is equal to or lighter than the reference standard solution.

(b) Provide FA-C for Multi-Layer Polymer Concrete Overlay complying with TABLE 1102-3.

| TABLE 1102-3: QUALITY REQUIREMENTS FOR MULTI-LAYER POLYMER CONCRETE OVERLAY |
|---------------------------------|-----------------|------------------|
| Property | Requirement | Test Method |
| Soundness, minimum | 0.92 | KTMR-21 |
| Wear, maximum | 30% | AASHTO T96 |
| Acid Insoluble Residue, minimum | 55% | KTMR-28 |
| Fine Aggregate Angularity, minimum | 45% | KT-50 |
| Moisture Content, maximum | 0.2% | KT-11 |

(3) Product Control.
(a) Size Requirements. Provide fine aggregates that comply with TABLE 1102-4.
TABLE 1102-4: GRADING REQUIREMENTS FOR FINE AGGREGATES FOR CONCRETE

<table>
<thead>
<tr>
<th>Type</th>
<th>Percent Retained-Square Mesh Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>⅜" No. 4</td>
</tr>
<tr>
<td>FA-A</td>
<td>0</td>
</tr>
<tr>
<td>FA-C</td>
<td>0</td>
</tr>
</tbody>
</table>

(b) Deleterious Substances.
- Type FA-A: Maximum allowed deleterious substances by weight are:
 - Material passing the No. 200 sieve (KT-2)..........................2.0%
 - Coal (AASHTO T113)..0.5%
 - Sticks (wet) (KT-35)...0.1%
 - Sum of all deleterious..2.0%

(c) Uniformity of Supply. Designate or determine the fineness modulus (grading factor) according to the procedure listed in Part V, Section 17 before delivery, or from the first 10 samples tested and accepted. Provide aggregate that is within ±0.20 of the average fineness modulus.

(4) Proportioning of Coarse and Fine Aggregate. Combine Fine and Coarse aggregates in a 50%-50% ratio by weight. Adjustments to improve workability may be made when approved by the Engineer. Use of a proven optimization method such as the ACI 302.1 method can provide adequate justification.

(5) Handling and Stockpiling Fine Aggregates.
- Maintain separation between aggregates from different sources, with different gradings or with a significantly different specific gravity.
- Transport aggregate in a manner that promotes uniform grading.
- Do not use aggregates that have become mixed with earth or foreign material.
- Stockpile or bin all washed aggregate produced or handled by hydraulic methods for 12 hours (minimum) before batching. Rail shipment exceeding 12 hours is acceptable for binning provided the car bodies permit free drainage.
- Provide additional stockpiling or binning in cases of high or non-uniform moisture.

d. Mixed Aggregates for Concrete.

(1) Composition.
- (a) Total Mixed Aggregate (TMA). A natural occurring, predominately siliceous aggregate from a single source that complies with the Wetting & Drying Test and grading requirements.
- (b) Mixed Aggregate.
 - Basic Aggregate (BA). Singly or in combination, a natural occurring, predominately siliceous aggregate that does not comply with either the Wetting & Drying Test or grading requirements of the Total Mixed Aggregate. For MA-1 or MA-2 mixes, sweetened basic aggregate must contain at least 50% basic aggregate. For Contractor optimized mixes (MA-3, MA-5 and MA-6), sweetened basic aggregate must contain at least 30% basic aggregate.
 - Coarse Aggregate Sweetener. Types and proportions of aggregate sweeteners to be used with BA are listed in TABLE 1102-5.

TABLE 1102-5: COARSE AGGREGATE SWEETENER FOR BASIC AGGREGATE

<table>
<thead>
<tr>
<th>Type of Coarse Aggregate Sweetener</th>
<th>Proportion Required by Percent Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed Sandstone*</td>
<td>30 (minimum)</td>
</tr>
<tr>
<td>Crushed Limestone or Dolomite*</td>
<td>30 (minimum)</td>
</tr>
<tr>
<td>Siliceous Aggregates Approved under 1102.2d.(2) *</td>
<td>30 (minimum)</td>
</tr>
<tr>
<td>Siliceous Aggregates not Approved under 1102.2d.(2) **</td>
<td>30 (maximum)</td>
</tr>
</tbody>
</table>

*Waive the minimum portion of Coarse Aggregate Sweetener for all BA that comply with the wetting and drying requirements for TMA. In this case, combine the BA and coarse aggregate sweetener in proportions required complying with the grading listed in TABLE 1102-6.

**To be used only with BA that complies with the wetting and drying requirements of TMA.
(2) Quality.
(a) Total Mixed Aggregate.
- Soundness, minimum (KTMR-21) .. 0.90
- Wear, maximum (AASHTO T96) .. 50%
- Wetting & Drying Test of Sand-Gravel Aggregate for Concrete (KTMR-23)

Concrete Modulus of Rupture:
- At 60 days, minimum ... 550 psi
- At 365 days, minimum ... 550 psi

Expansion:
- At 180 days, maximum .. 0.050%
- At 365 days, maximum .. 0.070%

Aggregates produced from the following general areas are exempt from the Wetting and Drying Test:
- Blue River Drainage Area.
- The Arkansas River from Sterling, west to the Colorado state line.
- The Neosho River from Emporia to the Oklahoma state line.

(b) Basic Aggregate.
- Retain 10% or more of the BA on the No. 8 sieve before adding the Coarse Aggregate Sweetener. Aggregate with less than 10% retained on the No. 8 sieve is to be considered a Fine Aggregate described in subsection 1102.2c. Provide material with less than 5% calcareous material retained on the \(\frac{3}{8} \) inch sieve.
- Soundness, minimum (KTMR-21) .. 0.90
- Wear, maximum (AASHTO T96) .. 50%
- Mortar strength and Organic Impurities. If the DME determines it is necessary, because of unknown characteristics of new sources or changes in existing sources, provide mixed aggregates that comply with the following:
 - Mortar Strength (Mortar Strength Test, KTMR-26). Compressive strength when combined with Type III (high early strength) cement:
 - At age 24 hours, minimum .. 100%*
 - At age 72 hours, minimum .. 100%*
 *Compared to strengths of specimens of the same proportions, consistency, cement and standard 20-30 Ottawa sand.
- Organic Impurities (Organic Impurities in Fine Aggregate for Concrete Test, AASHTO T 21). The color of the supernatant liquid is equal to or lighter than the reference standard solution.

(c) Coarse Aggregate Sweetener. Comply with SCA-4 in subsection 1102.2a.

(3) Product Control.
(a) Size Requirement. Provide mixed aggregates that comply with TABLE 1102-6.
TABLE 1102-6: GRADING REQUIREMENTS FOR MIXED AGGREGATES FOR CONCRETE

<table>
<thead>
<tr>
<th>Type</th>
<th>Usage</th>
<th>Percent Retained - Square Mesh Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 ½"</td>
</tr>
<tr>
<td>MA-1</td>
<td>All concrete</td>
<td>0</td>
</tr>
<tr>
<td>MA-2</td>
<td>All Concrete</td>
<td>0</td>
</tr>
<tr>
<td>MA-3</td>
<td>Optimized</td>
<td>0</td>
</tr>
<tr>
<td>MA-4</td>
<td>Optimized</td>
<td>0</td>
</tr>
<tr>
<td>MA-5</td>
<td>Drilled Shafts³</td>
<td>0</td>
</tr>
<tr>
<td>MA-6</td>
<td>Optimized for Silica Fume</td>
<td>0</td>
</tr>
</tbody>
</table>

1Retain a maximum of 22% (24% for MA-6) and a minimum of 6% of the material on each individual sieve.
2Retain a maximum of 15% and a minimum of 6% of the material on each individual sieve.
3It is recommended that the aggregate gradation combine a SCA-3 or SCA-4 and an FA-A or Basic Aggregate for MA.

b) Additional Requirements for optimized mixes.
- Actual Workability must be within ± 5 of Target Workability.

Where:
- \(W_A = \) Actual Workability
- \(W_T = \) Target Workability
- \(CF = \) Coarseness Factor

1. Determine the Grading according to KT-2
2. Calculate the Coarseness Factor (CF) to the nearest whole number.

\[
CF = \frac{+3/8" \text{ Material} %\text{ Retained}}{+\#8 \text{ Material} %\text{ Retained}} \times 100
\]

3. Calculate the Actual Workability (\(W_A \)) to the nearest whole number as the percent material passing the #8 sieve.

\[
W_A = 100 - \% \text{ retained on #8 sieve}
\]

4. Calculate the Target Workability (\(W_T \)) to the nearest whole number where

For 521 lbs cement per cubic yard of concrete

\[
W_T = 46.14 - (\frac{CF}{6})
\]

For each additional 1 lb of cement per cubic yard, subtract 2.5/94 lbs from the Target Workability.

c) Deleterious Substances. Maximum allowed deleterious substances by weight are:
- Material passing the No. 200 sieve (KT-2).................................2.0%
- Clay lumps and friable particles (KT-7).................................1.0%
- Coal (AASHTO T 113)...0.5%
- Shale or Shale-like material (KT-8).................................0.5%
- Sticks (wet) (KT-35)...0.1%
- Sum of all deleterious...3.0%
(d) Uniformity of Supply. Designate or determine the fineness modulus (grading factor) according to the procedure listed in Part V, Section 17 before delivery, or from the first 10 samples tested and accepted. Provide aggregate that is within ±0.20 of the average fineness modulus.

(4) Handling Mixed Aggregates.

(a) Segregation. Before acceptance testing, remix all aggregate segregated by transit or stockpiling.
(b) Stockpiling.
 • Maintain separation between aggregates from different sources, with different gradings or with a significantly different specific gravity.
 • Transport aggregate in a manner that promotes uniform grading.
 • Do not use aggregates that have become mixed with earth or foreign material.
 • Stockpile or bin all washed aggregate produced or handled by hydraulic methods for 12 hours (minimum) before batching. Rail shipment exceeding 12 hours is acceptable for binning provided the car bodies permit free drainage.
 • Provide additional stockpiling or binning in cases of high or non-uniform moisture.

e. Miscellaneous Aggregates for Concrete.

(1) Aggregates for Mortar Sand, Type FA-M.
(a) Composition. Provide aggregates for mortar sand, Type FA-M that is natural occurring sand.
(b) Quality.
 • Mortar strength and Organic Impurities. If the DME determines it is necessary, because of unknown characteristics of new sources or changes in existing sources, provide aggregates for mortar sand, Type FA-M that comply with the following:
 • Mortar Strength (Mortar Strength Test, KTMR-26). Compressive strength when combined with Type III (high early strength) cement:
 • At age 24 hours, minimum ... 100%*
 • At age 72 hours, minimum ... 100%*
 * Compared to strengths of specimens of the same proportions, consistency, cement and standard 20-30 Ottawa sand.
 • Organic Impurities (Organic Impurities in Fine Aggregate for Concrete Test, AASHTO T 21). The color of the supernatant liquid is equal to or lighter than the reference standard solution.
(c) Product Control.
 • Size Requirements. Provide aggregates for mortar sand, Type FA-M that comply with TABLE 1102-7.

<table>
<thead>
<tr>
<th>Type</th>
<th>Percent Retained - Square Mesh Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. 4</td>
</tr>
<tr>
<td>FA-M</td>
<td>0</td>
</tr>
</tbody>
</table>

Deleterious Substances. Maximum allowed deleterious substances by weight are:
 • Material passing the No. 200 sieve (KT-2) ... 2.0%
 • Clay lumps and friable material (KT-7) .. 1.0%
 • Coal (AASHTO T 113) ... 0.5%
 • Sticks (wet) (KT-35) .. 0.1%
 • Sum of all deleterious ... 2.5%

(2) Modified Lightweight Aggregates.
(a) Composition. Provide a modified lightweight aggregate produced from a uniform deposit of raw material combined with FA-A subsection 1102.2c.
(b) Quality.

- Soundness, minimum (KTMR-21) ... 0.90
- Loss on Ignition .. 5%

(c) Product Control.

- Size Requirements. Provide modified lightweight aggregates that comply with TABLE 1102-8.

<table>
<thead>
<tr>
<th>Type</th>
<th>Percent Retained - Square Mesh Sieves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>¼"</td>
</tr>
<tr>
<td>Grade 1</td>
<td>0</td>
</tr>
<tr>
<td>Grade 2</td>
<td>0-2</td>
</tr>
</tbody>
</table>

- Deleterious Substances.
 - Organic Impurities (Organic Impurities in Fine Aggregate for Concrete Test, AASHTO T 21). The color of the supernatant liquid is equal to or lighter than the reference standard solution.
 - Unit Weight (dry, loose weight) (max.).. 1890 lbs/cu yd

(d) Concrete Making Properties. Drying shrinkage of concrete specimens prepared with modified lightweight aggregate and FA-A proportioned as shown in the Contract Documents can not exceed 0.07%.

(e) Uniformity of Supply. Designate or determine the fineness modulus (grading factor) according to procedure listed in Part V, Section 17 before delivery, or from the first 10 samples tested and accepted. Provide aggregate that is within ±0.20 of the average fineness modulus.

(f) Proportioning Materials. Submit mix designs for concrete using modified lightweight aggregate to Materials and Research for approval prior to use.

(g) Stockpiling

- Stockpile accepted aggregates in layers 3 to 5 feet thick. Berm each layer so that aggregates do not "cone" down into lower layers.
- Keep aggregates from different sources, with different gradings or with a significantly different specific gravity separated.
- Transport aggregate in a manner that promotes uniform gradation.
- Do not use aggregates that have become mixed with earth or foreign material.
- Stockpile or bin all washed aggregate produced or handled by hydraulic methods for 12 hours (minimum) before batching. Rail shipment exceeding 12 hours is acceptable for binning, provided the car bodies permit free drainage.
- Provide additional stockpiling or binning in cases of high or non-uniform moisture.

1102.3 TEST METHODS
Test aggregates according to the applicable provisions of SECTION 1115.

1102.4 PREQUALIFICATION
Aggregates for concrete must be prequalified according to subsection 1101.4.

1102.5 BASIS OF ACCEPTANCE
The Engineer will accept aggregates for concrete base on the prequalification required by this specification and subsection 1101.5.